• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ma Yuchi, Yang Ning, Xie Lin, Li Chuan, and Tang Changjie. Social Roles Discovery of Moving Objects Based on Spatial-Temporal Associated Semantics and Temporal Entropy of Trajectories[J]. Journal of Computer Research and Development, 2012, 49(10): 2153-2160.
Citation: Ma Yuchi, Yang Ning, Xie Lin, Li Chuan, and Tang Changjie. Social Roles Discovery of Moving Objects Based on Spatial-Temporal Associated Semantics and Temporal Entropy of Trajectories[J]. Journal of Computer Research and Development, 2012, 49(10): 2153-2160.

Social Roles Discovery of Moving Objects Based on Spatial-Temporal Associated Semantics and Temporal Entropy of Trajectories

More Information
  • Published Date: October 14, 2012
  • Existing methodologies on the measurement of trajectory similarity pay little attention to the spatial temporal semantics and temporal randomness of trajectories, and as a result they likely misclassify moving objects by their social roles. This problem, this research addresses this problem from four aspects. Firstly, this research proposes the concept of spatial temporal associated semantics (STAS) which is proportion to the probability of the evens that different moving objects pass by areas with same type at a time. Secondly, this research proposes the concept of temporal entropy which quantifies the randomness of the time instances, at which one trajectory passes by the areas with same type. Thirdly, this research proposes a new similarity measure, trajectory semantic similarity (TSS), which combines STAS and temporal entropy and captures the spatial-temporal characteristics of the social roles of trajectories. Finally, this research presents an algorithm, SRDA (social roles discovering algorithm), to cluster the trajectories based on TSS, and each resulting cluster represents a different social role. The extensive experiments conducted on real data set and synthetic data set show that SRDA improves the average accuracy by 18% with linear temporal complexity, which validates the effectiveness and efficiency of SRDA.
  • Related Articles

    [1]Zheng Han, Wang Ning, Ma Xinzhu, Zhang Hong, Wang Zhihui, Li Haojie. Point Cloud Scene Flow Propagation Update Method Based on Neighborhood Consistency[J]. Journal of Computer Research and Development, 2023, 60(2): 426-434. DOI: 10.7544/issn1000-1239.202110745
    [2]Zhang Rui, Li Jintao. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(4): 859-875. DOI: 10.7544/issn1000-1239.2020.20190513
    [3]Lin Xin, Tian Xin, Ji Yi, Xu Yunlong, Liu Chunping. Scene Graph Generation Based on Shuffle Residual Context Information[J]. Journal of Computer Research and Development, 2019, 56(8): 1721-1730. DOI: 10.7544/issn1000-1239.2019.20190329
    [4]Li Zhen, Tian Junfeng, and Yang Xiaohui. Dynamic Trustworthiness Evaluation Model of Software Based on Checkpoint's Classification Attributes[J]. Journal of Computer Research and Development, 2013, 50(11): 2397-2405.
    [5]Xie Zhao, Ling Ran, and Wu Kewei. Incremental Learning Towards Scene Features in Independent Subspace[J]. Journal of Computer Research and Development, 2013, 50(11): 2287-2294.
    [6]Wang Hongxin, Yang Deli, Jiang Nan, Ma Hui. An Online Mobile Payment Model with Simplified Terminal Authentication[J]. Journal of Computer Research and Development, 2013, 50(2): 291-301.
    [7]Qin Lei, Gao Wen. Scene Image Categorization Based on Content Correlation[J]. Journal of Computer Research and Development, 2009, 46(7): 1198-1205.
    [8]Wu Lingda, Gao Yu, and Wei Yingmei. A Survey of Interactive Rendering of Large-Scale and Complex Scenes[J]. Journal of Computer Research and Development, 2007, 44(9): 1579-1587.
    [9]Mao Chengying and Lu Yansheng. A Simplified Method for Generating Test Path Cases in Branch Testing[J]. Journal of Computer Research and Development, 2006, 43(2): 321-328.
    [10]Pu Jiantao and Zha Hongbin. Research on Visibility for Large-Scale and Complex Scenes[J]. Journal of Computer Research and Development, 2005, 42(2): 236-246.

Catalog

    Article views (1056) PDF downloads (860) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return