• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Xudong, Chen Xiaohong, Chen Songcan. Low-Resolution Face Recognition in Semi-Paired and Semi-Supervised Scenario[J]. Journal of Computer Research and Development, 2012, 49(11): 2328-2333.
Citation: Zhou Xudong, Chen Xiaohong, Chen Songcan. Low-Resolution Face Recognition in Semi-Paired and Semi-Supervised Scenario[J]. Journal of Computer Research and Development, 2012, 49(11): 2328-2333.

Low-Resolution Face Recognition in Semi-Paired and Semi-Supervised Scenario

More Information
  • Published Date: November 14, 2012
  • In the real environment, such as surveillance circumstances, there are a large number of low-resolution (LR) faces which are needed to be recognized. Compared with high-resolution (HR) face, LR has less discriminative details, so its recognition is more difficult. In order to improve the LR face recognition accuracy, the construction of LR face recognition system use not only the LR faces but also the HR faces corresponding to the LR faces in recent research. But there are two deficiencies in them: 1) HR faces and LR faces are required to be all paired; 2) the construction of face recognition system does not utilize any class information. Actually, it is the fact that HR faces and LR faces are always partially paired (semi-paried) and their class labels are partially known (semi-supervised). As a result, a semi-paired and semi-supervised algorithm for LR face recognition is developed to overcome the deficiencies of the relevant research. For the sake of utilizing the semi-paired and semi-supervised data more effectiviely, the implementation of the algorithm is divided into two stages. One stage is semi-paired learning and the other stage is semi-supervised learning. Promising experiments results on the Yale and AR face databases show the feasibility and effectiveness of the proposed method.
  • Related Articles

    [1]Cheng Yudong, Zhou Fang. Semi-Supervised Learning-Based Method for Unknown Anomaly Detection[J]. Journal of Computer Research and Development, 2024, 61(7): 1670-1680. DOI: 10.7544/issn1000-1239.202330627
    [2]Wen Yimin, Yuan Zhe, Yu Hang. A New Semi-Supervised Inductive Transfer Learning Framework: Co-Transfer[J]. Journal of Computer Research and Development, 2023, 60(7): 1603-1614. DOI: 10.7544/issn1000-1239.202220232
    [3]Wang Ting, Wang Na, Cui Yunpeng, Li Huan. The Optimization Method of Wireless Network Attacks Detection Based on Semi-Supervised Learning[J]. Journal of Computer Research and Development, 2020, 57(4): 791-802. DOI: 10.7544/issn1000-1239.2020.20190880
    [4]Tian Ze, Yang Ming, Li Aishi. Fast Low-Rank Shared Dictionary Learning with Sparsity Constraints on Face Recognition[J]. Journal of Computer Research and Development, 2018, 55(8): 1760-1772. DOI: 10.7544/issn1000-1239.2018.20180364
    [5]Xu Mengfan, Li Xinghua, Liu Hai, Zhong Cheng, Ma Jianfeng. An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio[J]. Journal of Computer Research and Development, 2017, 54(10): 2255-2267. DOI: 10.7544/issn1000-1239.2017.20170456
    [6]Liu Yufeng, Li Renfa. Graph Regularized Semi-Supervised Learning on Heterogeneous Information Networks[J]. Journal of Computer Research and Development, 2015, 52(3): 606-613. DOI: 10.7544/issn1000-1239.2015.20131147
    [7]Li Yufeng, Huang Shengjun, and Zhou Zhihua. Regularized Semi-Supervised Multi-Label Learning[J]. Journal of Computer Research and Development, 2012, 49(6): 1272-1278.
    [8]Xu Zhen, Sha Chaofeng, Wang Xiaoling, Zhou Aoying. A Semi-Supervised Learning Algorithm from Imbalanced Data Based on KL Divergence[J]. Journal of Computer Research and Development, 2010, 47(1): 81-87.
    [9]Wang Lihong, Zhao Xianjia, Wu Shuanhu. Semi-supervised Learning of Promoter Sequences Based on EM Algorithm[J]. Journal of Computer Research and Development, 2009, 46(11): 1942-1948.
    [10]Li Ming and Zhou Zhihua. Online Semi-Supervised Learning with Multi-Kernel Ensemble[J]. Journal of Computer Research and Development, 2008, 45(12): 2060-2068.

Catalog

    Article views (953) PDF downloads (676) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return