• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xu Mengfan, Li Xinghua, Liu Hai, Zhong Cheng, Ma Jianfeng. An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio[J]. Journal of Computer Research and Development, 2017, 54(10): 2255-2267. DOI: 10.7544/issn1000-1239.2017.20170456
Citation: Xu Mengfan, Li Xinghua, Liu Hai, Zhong Cheng, Ma Jianfeng. An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio[J]. Journal of Computer Research and Development, 2017, 54(10): 2255-2267. DOI: 10.7544/issn1000-1239.2017.20170456

An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio

More Information
  • Published Date: September 30, 2017
  • State-of-the-art intrusion detection schemes for unknown attacks employ machine learning techniques to identify anomaly features within network traffic data. However, due to the lack of enough training set, the difficulty of selecting features quantitatively and the dynamic change of unknown attacks, the existing schemes cannot detect unknown attacks effectually. To address this issue, an intrusion detection scheme based on semi-supervised learning and information gain ratio is proposed. In order to overcome the limited problem of training set in the training period, the semi-supervised learning algorithm is used to obtain large-scale training set with a small amount of labelled data. In the detection period, the information gain ratio is introduced to determine the impact of different features and weight voting to infer the final output label to identify unknown attacks adaptively and quantitatively, which can not only retain the information of features at utmost, but also adjust the weight of single decision tree adaptively against dynamic attacks. Extensive experiments indicate that the proposed scheme can quantitatively analyze the important network traffic features of unknown attacks and detect them by using a small amount of labelled data with no less than 91% accuracy and no more than 5% false negative rate, which have obvious advantages over existing schemes.
  • Related Articles

    [1]Zhang Long, Wang Jinsong. DDoS Attack Detection Model Based on Information Entropy and DNN in SDN[J]. Journal of Computer Research and Development, 2019, 56(5): 909-918. DOI: 10.7544/issn1000-1239.2019.20190017
    [2]Zhou Yanhong, Zhang Xianyong, Mo Zhiwen. Conditional Neighborhood Entropy with Granulation Monotonicity and Its Relevant Attribute Reduction[J]. Journal of Computer Research and Development, 2018, 55(11): 2395-2405. DOI: 10.7544/issn1000-1239.2018.20170607
    [3]Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
    [4]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [5]Tang Liangrui, Chen Yuanyuan, and Feng Sen. A Chain Routing Algorithm Based on Evidence Theory in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(7): 1362-1369.
    [6]Xu Junling, Zhou Yuming, Chen Lin, Xu Baowen. An Unsupervised Feature Selection Approach Based on Mutual Information[J]. Journal of Computer Research and Development, 2012, 49(2): 372-382.
    [7]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [8]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [9]Xiong Zhongmin, Hao Zhongxiao. An Approach to Termination Decision for a Rule Set Based on Activation Path and Conditional Formula[J]. Journal of Computer Research and Development, 2006, 43(5): 901-907.
    [10]Wang Xizhao and An Sufang. Research on Learning Weights of Fuzzy Production Rules Based on Maximum Fuzzy Entropy[J]. Journal of Computer Research and Development, 2006, 43(4): 673-678.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1486) PDF downloads (1305) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return