• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Tieming, Ma Jixia, Samuel H.Huang, Cai Jiamei. Novel and Efficient Method on Feature Selection and Data Classification[J]. Journal of Computer Research and Development, 2012, 49(4): 735-745.
Citation: Chen Tieming, Ma Jixia, Samuel H.Huang, Cai Jiamei. Novel and Efficient Method on Feature Selection and Data Classification[J]. Journal of Computer Research and Development, 2012, 49(4): 735-745.

Novel and Efficient Method on Feature Selection and Data Classification

More Information
  • Published Date: April 14, 2012
  • A novel feature selection method for data classification problems, as well as a quick rule extraction scheme, are proposed in this paper. At first, the Chi-Merge discretization method is improved by reducing the initial intervals. Using the improved method, the continuous attributes can be effectively discretized. After the attributes discretization, all contingency tables on variant feature patterns can be calculated quickly, and the inconsistency rate can also be generated for each contingency table. The key sequential of features can be identified by selecting the minimum inconsistency rate, and the optimized feature subset can also be achieved efficiently based on the sequence forward search strategy. At last, based on the data contingency table under the selected feature subset, the classification rules can be extracted with one-pass. The experiments show that the proposed data classification scheme obtains good performance. Furthermore, the proposed feature selection and rule extraction method can be extended for the classification applications on distributed isomorphic datasets. The proposed distributed classification method is also simple, efficient with high performance, as well as with privacy-preserving property for contents of sample data.
  • Related Articles

    [1]Jin Ge, Wei Xiaochao, Wei Senmao, Wang Hao. FPCBC: Federated Learning Privacy Preserving Classification System Based on Crowdsourcing Aggregation[J]. Journal of Computer Research and Development, 2022, 59(11): 2377-2394. DOI: 10.7544/issn1000-1239.20220528
    [2]Wang Leixia, Meng Xiaofeng. ESA: A Novel Privacy Preserving Framework[J]. Journal of Computer Research and Development, 2022, 59(1): 144-171. DOI: 10.7544/issn1000-1239.20201042
    [3]Liu Qiang, Li Tong, Yu Yang, Cai Zhiping, Zhou Tongqing. Data Security and Privacy Preserving Techniques for Wearable Devices: A Survey[J]. Journal of Computer Research and Development, 2018, 55(1): 14-29. DOI: 10.7544/issn1000-1239.2018.20160765
    [4]Cao Zhenfu, Dong Xiaolei, Zhou Jun, Shen Jiachen, Ning Jianting, Gong Junqing. Research Advances on Big Data Security and Privacy Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2137-2151. DOI: 10.7544/issn1000-1239.2016.20160684
    [5]Dong Xiaolei. Advances of Privacy Preservation in Internet of Things[J]. Journal of Computer Research and Development, 2015, 52(10): 2341-2352. DOI: 10.7544/issn1000-1239.2015.20150764
    [6]Xu Yong, Qin Xiaolin, Yang Yitao, Yang Zhongxue, Huang Can. A QI Weight-Aware Approach to Privacy Preserving Publishing Data Set[J]. Journal of Computer Research and Development, 2012, 49(5): 913-924.
    [7]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.
    [8]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [9]Liu Yubao, Huang Zhilan, Ada Wai Chee Fu, Yin Jian. A Data Privacy Preservation Method Based on Lossy Decomposition[J]. Journal of Computer Research and Development, 2009, 46(7): 1217-1225.
    [10]Ge Weiping, Wang Wei, Zhou Haofeng, and Shi Baile. Privacy Preserving Classification Mining[J]. Journal of Computer Research and Development, 2006, 43(1): 39-45.

Catalog

    Article views (813) PDF downloads (622) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return