• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Leixia, Meng Xiaofeng. ESA: A Novel Privacy Preserving Framework[J]. Journal of Computer Research and Development, 2022, 59(1): 144-171. DOI: 10.7544/issn1000-1239.20201042
Citation: Wang Leixia, Meng Xiaofeng. ESA: A Novel Privacy Preserving Framework[J]. Journal of Computer Research and Development, 2022, 59(1): 144-171. DOI: 10.7544/issn1000-1239.20201042

ESA: A Novel Privacy Preserving Framework

Funds: This work was supported by the National Natural Science Foundation of China (61941121, 91846204, 62172423).
More Information
  • Published Date: December 31, 2021
  • With the rapid development of data-driven intelligent technologies, large-scale data collection has become a main application scenario of data governance and privacy-preserving. Local differential privacy technology as a mainstream technology has been widely used in companies, such as Google, Apple, and Microsoft. However, this technology has a fatal drawback, which is its poor data utility caused by accumulative noises added to users’ data. To juggle the data privacy and utility, the ESA (encode-shuffle-analyze) framework is proposed. This framework tries adding noises as little as possible while maintaining the same degree of data privacy, which ensures that any user’s sensitive information can be used effectively but cannot be recognized from collected data. Considering the elegant and strict definition of differential privacy in math, the major implementation of the ESA framework is based on differential privacy, named shuffle differential privacy. In the case of the same privacy loss, the data utility of shuffled differential privacy method is O(n\+{1/2}) higher than that of local differential privacy, closing to the central differential privacy but does not rely on a trusted third party. This paper is a survey about this novel privacy-preserving framework. Based on the popular shuffle differential privacy technology, it analyzes this framework, summarizes the theoretical and technical foundations, and compares different privacy-preserving mechanisms under different statistical issues theoretically and experimentally. Finally, this work proposes the challenges of the ESA, and prospects the implementation of non-differential privacy methods over this framework.
  • Related Articles

    [1]Dai Hong, Sheng Lijie, Miao Qiguang. Adversarial Discriminative Domain Adaptation Algorithm with CapsNet[J]. Journal of Computer Research and Development, 2021, 58(9): 1997-2012. DOI: 10.7544/issn1000-1239.2021.20200569
    [2]Jiang Bin, Liu Hongyu, Yang Chao, Tu Wenxuan, Zhao Zilong. A Face Inpainting Algorithm with Local Attribute Generative Adversarial Networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2485-2493. DOI: 10.7544/issn1000-1239.2019.20180656
    [3]Ning Xin, Li Weijun, Li Haoguang, Liu Wenjie. Uncorrelated Locality Preserving Discriminant Analysis Based on Bionics[J]. Journal of Computer Research and Development, 2016, 53(11): 2623-2629. DOI: 10.7544/issn1000-1239.2016.20150630
    [4]Zhang Pan, Lian Qiusheng. Low-Rank Relaxed Collaborative Representation Combined with Global and Local Features for Face Recognition[J]. Journal of Computer Research and Development, 2014, 51(12): 2663-2670. DOI: 10.7544/issn1000-1239.2014.20131200
    [5]Ge Qi, Wei Zhihui, Xiao Liang, Zhang Jun. Adaptive Fast Image Segmentation Model Based on Local Feature[J]. Journal of Computer Research and Development, 2013, 50(4): 815-822.
    [6]Lou Songjiang, Zhang Guoyin, Pan Haiwei, and Wang Qingjun. Supervised Laplacian Discriminant Analysis for Small Sample Size Problem with Its Application to Face Recognition[J]. Journal of Computer Research and Development, 2012, 49(8): 1730-1737.
    [7]Zhang Yuejie, Xu Zhiting, and Xue Xiangyang. Fusion of Multiple Features for Chinese Named Entity Recognition Based on Maximum Entropy Model[J]. Journal of Computer Research and Development, 2008, 45(6).
    [8]Zheng Yujie, Yang Jingyu, Xu Yong, and Yu Dongjun. A New Feature Extraction Method Based on Fisher Discriminant Minimal Criterion[J]. Journal of Computer Research and Development, 2006, 43(7): 1201-1206.
    [9]Liang Zhizhen and Shi Pengfei. Kernel Uncorrelated Discriminant Analysis and Its Application to Handwritten Character Recognition[J]. Journal of Computer Research and Development, 2006, 43(1): 132-137.
    [10]Xu Yong, Yang Jingyu, Jin Zhong, and Lou Zhen. A Fast Kernel-Based Nonlinear Discriminant Analysis Method[J]. Journal of Computer Research and Development, 2005, 42(3).
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (958) PDF downloads (572) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return