• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
Citation: Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).

A Privacy-Preserving Data Publishing Algorithm for Clustering Application

More Information
  • Published Date: December 14, 2010
  • Privacy has become a more and more serious concern in applications involving micro-data. Recently, privacy-preserving data publishing has attracted much research work. Most of the present methods focus on categorical data publishing, and the potential applications are mainly for aggregate querying, frequent pattern mining and classification. Concerning the problem of publishing numerical data for clustering analysis, definitions of individual data record and common data record are introduced by making density analysis within the neighborhood of a given record, which can describe the effect of each data record on maintaining clustering usability. Furthermore, positive neighborhood and negative neighborhood are designed for individual data record respectively. Based on the above definitions, a data obfuscating method NeSDO is proposed, which realizes privacy-preserving data publishing by substituting primitive micro-data values with synthetic statistical values of some suitable data subset. For an individual data record, average value of records in its negative neighborhood(or positive neighborhood) is adopted to substitute corresponding items of this record. For a common data record, average value of records in its k nearest neighborhood is adopted vice versa. Theoretical analysis and experimental results indicate that the algorithm NeSDO is effective and can preserve privacy of the sensitive data well meanwhile maintaining better clustering usability.
  • Related Articles

    [1]Zhang Qiang, Ye Ayong, Ye Guohua, Deng Huina, Chen Aimin. k-Anonymous Data Privacy Protection Mechanism Based on Optimal Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1625-1635. DOI: 10.7544/issn1000-1239.20210117
    [2]Li Song, Hu Yanming, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing[J]. Journal of Computer Research and Development, 2021, 58(3): 609-623. DOI: 10.7544/issn1000-1239.2021.20200285
    [3]Hong Min, Jia Caiyan, Li Yafang, Yu Jian. Sample-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2019, 56(8): 1677-1685. DOI: 10.7544/issn1000-1239.2019.20190150
    [4]Li Shunyong, Zhang Miaomiao, Cao Fuyuan. A MD fuzzy k-modes Algorithm for Clustering Categorical Matrix-Object Data[J]. Journal of Computer Research and Development, 2019, 56(6): 1325-1337. DOI: 10.7544/issn1000-1239.2019.20180737
    [5]Shi Qianyu, Liang Jiye, Zhao Xingwang. A Clustering Ensemble Algorithm for Incomplete Mixed Data[J]. Journal of Computer Research and Development, 2016, 53(9): 1979-1989. DOI: 10.7544/issn1000-1239.2016.20150592
    [6]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [7]Xu Yong, Qin Xiaolin, Yang Yitao, Yang Zhongxue, Huang Can. A QI Weight-Aware Approach to Privacy Preserving Publishing Data Set[J]. Journal of Computer Research and Development, 2012, 49(5): 913-924.
    [8]Ni Weiwei, Xu Lizhen, Chong Zhihong, Wu Yingjie, Liu Tengteng, and Sun Zhihui. A Privacy-Preserving Data Perturbation Algorithm Based on Neighborhood Entropy[J]. Journal of Computer Research and Development, 2009, 46(3): 498-504.
    [9]Zhuang Yi, Zhuang Yueting, and Wu Fei. k Nearest Neighbor Queries Based on Data Grid[J]. Journal of Computer Research and Development, 2006, 43(11): 1876-1885.
    [10]Han Jingyu, Xu Lizhen, and Dong Yisheng. An Approach for Detecting Similar Duplicate Records of Massive Data[J]. Journal of Computer Research and Development, 2005, 42(12): 2206-2212.

Catalog

    Article views (486) PDF downloads (594) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return