• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yan Yuejin, Li Zhoujun, and Chen Huowang. A Depth-First Search Algorithm for Mining Maximal Frequent Itemsets[J]. Journal of Computer Research and Development, 2005, 42(3).
Citation: Yan Yuejin, Li Zhoujun, and Chen Huowang. A Depth-First Search Algorithm for Mining Maximal Frequent Itemsets[J]. Journal of Computer Research and Development, 2005, 42(3).

A Depth-First Search Algorithm for Mining Maximal Frequent Itemsets

More Information
  • Published Date: March 14, 2005
  • Maximal frequent itemsets mining is a fundamental and important problem in many data mining applications. Since the MaxMiner algorithm first introduced the enumeration tree for MFI mining in 1998, there have been several proposed methods using depth-first search to improve performance. Here presented is DFMfi, a new depth-first search algorithm for mining maximal frequent itemsets. DFMfi adopts bitmap data format, several popular prune techniques which prune the search space efficiently, and local maximal frequent itemsets for superset checking quickly. Experimental comparison with the previous work indicates that it accelerates the generation of maximal frequent itemsets obviously, thus reducing CPU time.
  • Related Articles

    [1]Li Song, Hu Yanming, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing[J]. Journal of Computer Research and Development, 2021, 58(3): 609-623. DOI: 10.7544/issn1000-1239.2021.20200285
    [2]Tan Chao, Ji Genlin, Zhao Bin. Self-Adaptive Streaming Big Data Learning Algorithm Based on Incremental Tangent Space Alignment[J]. Journal of Computer Research and Development, 2017, 54(11): 2547-2557. DOI: 10.7544/issn1000-1239.2017.20160712
    [3]Zhang Yanhua, Hu Yupu. A New Verifiably Encrypted Signature Scheme from Lattices[J]. Journal of Computer Research and Development, 2017, 54(2): 305-312. DOI: 10.7544/issn1000-1239.2017.20150887
    [4]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [5]Gan Liang, Jia Yan, Li Aiping, Jin Xin. A Huge Dimension Table Join Algorithm for Construction of StreamCube[J]. Journal of Computer Research and Development, 2011, 48(1): 55-67.
    [6]Yang Liping, Huang Houkuan. A Pareto Coevolutionary Algorithm Integrated with Dimension Extraction[J]. Journal of Computer Research and Development, 2010, 47(9): 1504-1513.
    [7]Mao Guojun and Zong Dongjun. An Intrusion Detection Model Based on Mining Multi-Dimension Data Streams[J]. Journal of Computer Research and Development, 2009, 46(4): 602-609.
    [8]Yang Xuemei, Dong Yisheng, Xu Hongbing, Liu Xuejun, Qian Jiangbo, Wang Yongli. Online Correlation Analysis for Multiple Dimensions Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1744-1750.
    [9]Li Zehai, Sun Jigui, Zhao Jun, Yu Haihong. Modeling Irregular Dimensions in OLAP[J]. Journal of Computer Research and Development, 2006, 43(2): 301-306.
    [10]Liang Zuopeng, Hu Kongfa, Dong Yisheng, Chen Ling. An Improved Dimension Hierarchy Aggregate Cube Storage Structure for Data Warehouses[J]. Journal of Computer Research and Development, 2005, 42(8): 1362-1368.

Catalog

    Article views (567) PDF downloads (740) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return