• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Xiaoyu, Li Dongdong, Ren Pengjie, Chen Zhumin, Ma Jun, Ren Zhaochun. Memory Networks Based Knowledge-Aware Medical Dialogue Generation[J]. Journal of Computer Research and Development, 2022, 59(12): 2889-2900. DOI: 10.7544/issn1000-1239.20210851
Citation: Zhang Xiaoyu, Li Dongdong, Ren Pengjie, Chen Zhumin, Ma Jun, Ren Zhaochun. Memory Networks Based Knowledge-Aware Medical Dialogue Generation[J]. Journal of Computer Research and Development, 2022, 59(12): 2889-2900. DOI: 10.7544/issn1000-1239.20210851

Memory Networks Based Knowledge-Aware Medical Dialogue Generation

Funds: This work was supported by the National Natural Science Foundation of China (61902219, 61972234, 62072279, 62102234), the Key Scientific and Technological Innovation Program of Shandong Province (2019JZZY010129), the Natural Science Foundation of Shandong Province(ZR202102230192),the Shandong University Multidisciplinary Research and Innovation Team of Young Scholars (2020QNQT017), the Tencent WeChat Rhino-Bird Focused Research Program (JR-WXG2021411), and the Fundamental Research Funds of Shandong University.
More Information
  • Published Date: November 30, 2022
  • Due to the shortage of medical resources, insufficient time and inconvenient travel, many patients can not get timely diagnosis or treatment. In this paper, a model named MKMed (knowledge-aware memory networks-based medical dialogue generation model) is proposed. It incorporates professional medical external knowledge to generate response. Concretely, the proposed model first tracks knowledge entities from dialogue history by exact word matching. Next, it performs a two-stage prediction in the external knowledge base to select medical entities and corresponding knowledge, which can be used in generating response. The two-stage prediction mainly uses methods for calculating co-occurrence matrix and cosine similarity between entities. Then it uses memory networks to store the information of knowledge and history. Finally, MKMed generates responses incorporating the stored information in the memory networks and uses recurrent neural network with attention mechanism. Experiments are carried out on a large-scale medical dialogue dataset with external knowledge, KaMed, which is a realistic dataset collected from the online platform. The experimental results indicate that the proposed model, MKMed, is significantly superior to the most baselines in terms of fluency, diversity, correctness and professionalism of response generation. This paper reveals that importing external knowledge with rational devised method is helpful for generating more precise and meaningful response.
  • Related Articles

    [1]Zhang Naizhou, Cao Wei, Zhang Xiaojian, Li Shijun. Conversation Generation Based on Variational Attention Knowledge Selection and Pre-trained Language Model[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440551
    [2]Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016
    [3]Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
    [4]Wei Zhenkai, Cheng Meng, Zhou Xiabing, Li Zhifeng, Zou Bowei, Hong Yu, Yao Jianmin. Convolutional Interactive Attention Mechanism for Aspect Extraction[J]. Journal of Computer Research and Development, 2020, 57(11): 2456-2466. DOI: 10.7544/issn1000-1239.2020.20190748
    [5]Chen Yanmin, Wang Hao, Ma Jianhui, Du Dongfang, Zhao Hongke. A Hierarchical Attention Mechanism Framework for Internet Credit Evaluation[J]. Journal of Computer Research and Development, 2020, 57(8): 1755-1768. DOI: 10.7544/issn1000-1239.2020.20200217
    [6]Li Mengying, Wang Xiaodong, Ruan Shulan, Zhang Kun, Liu Qi. Student Performance Prediction Model Based on Two-Way Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(8): 1729-1740. DOI: 10.7544/issn1000-1239.2020.20200181
    [7]Zhang Yingying, Qian Shengsheng, Fang Quan, Xu Changsheng. Multi-Modal Knowledge-Aware Attention Network for Question Answering[J]. Journal of Computer Research and Development, 2020, 57(5): 1037-1045. DOI: 10.7544/issn1000-1239.2020.20190474
    [8]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [9]Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606
    [10]Zhang Zhichang, Zhang Zhenwen, Zhang Zhiman. User Intent Classification Based on IndRNN-Attention[J]. Journal of Computer Research and Development, 2019, 56(7): 1517-1524. DOI: 10.7544/issn1000-1239.2019.20180648
  • Cited by

    Periodical cited type(1)

    1. 杜金明,孙媛媛,林鸿飞,杨亮. 融入知识图谱和课程学习的对话情绪识别. 计算机研究与发展. 2024(05): 1299-1309 . 本站查看

    Other cited types(1)

Catalog

    Article views (222) PDF downloads (120) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return