• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ma Ang, Yu Yanhua, Yang Shengli, Shi Chuan, Li Jie, Cai Xiuxiu. Survey of Knowledge Graph Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. DOI: 10.7544/issn1000-1239.20211264
Citation: Ma Ang, Yu Yanhua, Yang Shengli, Shi Chuan, Li Jie, Cai Xiuxiu. Survey of Knowledge Graph Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. DOI: 10.7544/issn1000-1239.20211264

Survey of Knowledge Graph Based on Reinforcement Learning

Funds: This work was supported by the National Natural Science Foundation of China (U1936104), and the National Key Research and Development Program of China (2020YFB2104503).
More Information
  • Published Date: July 31, 2022
  • Knowledge graph (KG) is a form of data representation that uses graph structure to model the connections between things. It is an important foundation for realizing cognitive intelligence and has received extensive attention from academia and industry. The research of knowledge graph includes four parts: knowledge representation, knowledge extraction, knowledge fusion, knowledge reasoning. Currently, there are still some challenges in the research of knowledge graphs. For example, knowledge extraction methods face difficulty in obtaining labeled data, while distantly supervised training samples have noise problems. The interpretability and reliability of the knowledge reasoning methods need to be further improved. Knowledge representation methods also have problems such as relying on manually defined rules or prior knowledge. Knowledge fusion methods fail to fully model the interdependence between entities. Environment-driven reinforcement learning (RL) algorithms are suitable for sequential decision-making problems. By modeling the research problem of the knowledge graph into a path (sequence) problem, and applying reinforcement learning methods, the above-mentioned problems in the knowledge graph can be solved, which has important application value. The basic knowledge of KG and RL are introduced firstly. Secondly, a research of KG based on RL are comprehensively reviewed. Then, it focuses on how the KG method based on RL can be applied to practical application areas such as intelligent recommendation, conversation system, game, biology, medicine prediction, finance and cybersecurity. Finally, the future directions of KG and RL are discussed in detail.
  • Related Articles

    [1]Zhang Naizhou, Cao Wei, Zhang Xiaojian, Li Shijun. Conversation Generation Based on Variational Attention Knowledge Selection and Pre-trained Language Model[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440551
    [2]Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016
    [3]Cheng Yan, Yao Leibo, Zhang Guanghe, Tang Tianwei, Xiang Guoxiong, Chen Haomai, Feng Yue, Cai Zhuang. Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(12): 2583-2595. DOI: 10.7544/issn1000-1239.2020.20190854
    [4]Wei Zhenkai, Cheng Meng, Zhou Xiabing, Li Zhifeng, Zou Bowei, Hong Yu, Yao Jianmin. Convolutional Interactive Attention Mechanism for Aspect Extraction[J]. Journal of Computer Research and Development, 2020, 57(11): 2456-2466. DOI: 10.7544/issn1000-1239.2020.20190748
    [5]Chen Yanmin, Wang Hao, Ma Jianhui, Du Dongfang, Zhao Hongke. A Hierarchical Attention Mechanism Framework for Internet Credit Evaluation[J]. Journal of Computer Research and Development, 2020, 57(8): 1755-1768. DOI: 10.7544/issn1000-1239.2020.20200217
    [6]Li Mengying, Wang Xiaodong, Ruan Shulan, Zhang Kun, Liu Qi. Student Performance Prediction Model Based on Two-Way Attention Mechanism[J]. Journal of Computer Research and Development, 2020, 57(8): 1729-1740. DOI: 10.7544/issn1000-1239.2020.20200181
    [7]Zhang Yingying, Qian Shengsheng, Fang Quan, Xu Changsheng. Multi-Modal Knowledge-Aware Attention Network for Question Answering[J]. Journal of Computer Research and Development, 2020, 57(5): 1037-1045. DOI: 10.7544/issn1000-1239.2020.20190474
    [8]Zhang Yixuan, Guo Bin, Liu Jiaqi, Ouyang Yi, Yu Zhiwen. app Popularity Prediction with Multi-Level Attention Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 984-995. DOI: 10.7544/issn1000-1239.2020.20190672
    [9]Liu Ye, Huang Jinxiao, Ma Yutao. An Automatic Method Using Hybrid Neural Networks and Attention Mechanism for Software Bug Triaging[J]. Journal of Computer Research and Development, 2020, 57(3): 461-473. DOI: 10.7544/issn1000-1239.2020.20190606
    [10]Zhang Zhichang, Zhang Zhenwen, Zhang Zhiman. User Intent Classification Based on IndRNN-Attention[J]. Journal of Computer Research and Development, 2019, 56(7): 1517-1524. DOI: 10.7544/issn1000-1239.2019.20180648
  • Cited by

    Periodical cited type(1)

    1. 郑章财,徐锋. 嵌入式服务器软件接口通信容量调节算法仿真. 计算机仿真. 2024(04): 265-269 .

    Other cited types(0)

Catalog

    Article views (1607) PDF downloads (1018) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return