• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Fei, Gao Wei, Wang Guilin, Xie Dongqing, Tang Chunming. Generic Tightly Secure Signature Schemes from Strong Chameleon Hash Functions[J]. Journal of Computer Research and Development, 2017, 54(10): 2244-2254. DOI: 10.7544/issn1000-1239.2017.20170422
Citation: Li Fei, Gao Wei, Wang Guilin, Xie Dongqing, Tang Chunming. Generic Tightly Secure Signature Schemes from Strong Chameleon Hash Functions[J]. Journal of Computer Research and Development, 2017, 54(10): 2244-2254. DOI: 10.7544/issn1000-1239.2017.20170422

Generic Tightly Secure Signature Schemes from Strong Chameleon Hash Functions

More Information
  • Published Date: September 30, 2017
  • Provable security has become one basic requirement for constructing and analyzing cryptographic schemes. This paper studies the classical issue in the field of provable security, namely how to construct provably secure digital signature schemes with tight security reduction from certain basic mathematical hard problems in the random oracle model. This paper first proposes a new cryptographic primitive called a strong chameleon Hash function. Based on a strong chameleon Hash function, we present a generic framework and its variant respectively for constructing a stateful and stateless digital signature scheme with tight security. We prove that these generic digital signature schemes are both secure under the assumption that the underlying chameleon Hash function is collision resistant in the random oracle model. By applying these generic construction methods to some concrete chameleon Hash functions under common mathematical assumptions such as RSA, CDH and IF (integer factorization), the corresponding digital signature schemes with tight security can be modularly obtained. The two existing classic paradigms to generically construct tightly secure signature schemes, i.e. Fiat-Shamir signatures and Full-Domain-Hash signatures, can be roughly unified by our generic frameworks. Furthermore, under our generic frameworks, a tightly secure signature scheme following the Fiat-Shamir methodology can be seen as the optimized variant of the corresponding tightly secure signature scheme following the Full-Domain-Hash framework.
  • Related Articles

    [1]Cheng Haodong, Han Meng, Zhang Ni, Li Xiaojuan, Wang Le. Closed High Utility Itemsets Mining over Data Stream Based on Sliding Window Model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. DOI: 10.7544/issn1000-1239.2021.20200554
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.

Catalog

    Article views (1440) PDF downloads (637) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return