• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Feng Jiaying, Zhang Xiaowang, Feng Zhiyong. Parallel Algorithms for RDF Type-Isomorphism on GPU[J]. Journal of Computer Research and Development, 2018, 55(3): 651-661. DOI: 10.7544/issn1000-1239.2018.20160845
Citation: Feng Jiaying, Zhang Xiaowang, Feng Zhiyong. Parallel Algorithms for RDF Type-Isomorphism on GPU[J]. Journal of Computer Research and Development, 2018, 55(3): 651-661. DOI: 10.7544/issn1000-1239.2018.20160845

Parallel Algorithms for RDF Type-Isomorphism on GPU

More Information
  • Published Date: February 28, 2018
  • Resource description framework (RDF), officially recommended by the World Wide Web Consortium (W3C), describes resources and the relationships of them on the Web. With the volume of RDF data rapidly increasing, a high performance method is necessary to efficiently process SPAQRL (simple protocol and RDF query language) query over RDF data, which can be reduced to the classical problem—subgraph isomorphism. As an important class of subgraph isomorphism, type-isomorphism helps many interesting queries over RDF data to get high performance such as star or linear query structures. However, many existing approaches, which are proposed to solve type-isomorphism, mostly depend on calculative capabilities of CPU. In recent years, graphic processing units (GPU) has been adopted to accelerate graph data processing widely in several works, which have better computational performance, superior scalability, and more reasonable prices. Considering the limited calculative capabilities of CPU in handling large-scale RDF data, we propose an algorithm that processes type-isomorphism problem on parallel GPU architecture over RDF datasets. In this paper, we implement the algorithm and evaluate it in the benchmark datasets—lehigh university benchmark (LUBM) through a mass of experiments. The experimental results show that our algorithm outperforms significantly than the CPU-based algorithms.
  • Cited by

    Periodical cited type(10)

    1. 陶蔚,陇盛,刘鑫,胡亚豪,黄金才. 深度学习步长自适应动量优化方法研究综述. 小型微型计算机系统. 2025(02): 257-265 .
    2. 张泽东,陇盛,鲍蕾,陶卿. 基于AdaBelief的Heavy-Ball动量方法. 模式识别与人工智能. 2022(02): 106-115 .
    3. 陇盛,陶蔚,张泽东,陶卿. 基于AdaGrad的自适应NAG方法及其最优个体收敛性. 软件学报. 2022(04): 1231-1243 .
    4. 曲军谊. 基于对偶平均的动量方法研究综述. 计算机与数字工程. 2022(11): 2443-2448 .
    5. 曲军谊,鲍蕾,陶卿. 非光滑凸问题投影型对偶平均优化方法的个体收敛性. 模式识别与人工智能. 2021(01): 25-32 .
    6. 黄鉴之,陇盛,陶卿. 自适应策略下Heavy-Ball型动量法的最优个体收敛速率. 模式识别与人工智能. 2021(02): 137-145 .
    7. 李兴怡,岳洋. 梯度下降算法研究综述. 软件工程. 2020(02): 1-4 .
    8. 丁成诚,陶蔚,陶卿. 一种三参数统一化动量方法及其最优收敛速率. 计算机研究与发展. 2020(08): 1571-1580 . 本站查看
    9. 鲁淑霞,蔡莲香,张罗幻. 基于动量加速零阶减小方差的鲁棒支持向量机. 计算机工程. 2020(12): 88-95+104 .
    10. 黄鉴之,丁成诚,陶蔚,陶卿. 非光滑凸情形Adam型算法的最优个体收敛速率. 智能系统学报. 2020(06): 1140-1146 .

    Other cited types(4)

Catalog

    Article views (1142) PDF downloads (693) Cited by(14)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return