• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang An, Hu Yan, Zhou Liang, Zheng Weimin, Shi Zhiqiang, Sun Limin. An Industrial Control System Anomaly Detection Algorithm Fusion by Information Flow and State Flow[J]. Journal of Computer Research and Development, 2018, 55(11): 2532-2542. DOI: 10.7544/issn1000-1239.2018.20170671
Citation: Yang An, Hu Yan, Zhou Liang, Zheng Weimin, Shi Zhiqiang, Sun Limin. An Industrial Control System Anomaly Detection Algorithm Fusion by Information Flow and State Flow[J]. Journal of Computer Research and Development, 2018, 55(11): 2532-2542. DOI: 10.7544/issn1000-1239.2018.20170671

An Industrial Control System Anomaly Detection Algorithm Fusion by Information Flow and State Flow

More Information
  • Published Date: October 31, 2018
  • Industrial control system (ICS) has highly correlation with physical environment. As a unique type of ICS attack, sequence attack injects the normal operations into the wrong sequence positions, which disturbs the process or even destroys the equipment. At present, most anomaly detection methods for sequence attack just detect the operation sequence acquiring from information flow. However, ICS is weak in protecting itself from cyber-attacks, which means that the data of information flow can be faked by attackers. The fake data is one of the main issues that can severely affect the detection accuracy. To remedy this problem, a fusion ICS anomaly detection algorithm is proposed in this paper. This algorithm utilizes the state information of equipment to establish the state flow. Via fusing state flow with information flow, the anomaly of operation sequence can be detected from the aspects of time and order. Meanwhile, to extend the detection range and reduce the detection latency, we use the data of state flow to recognize the anomaly state of equipment between two operations, which is caused by the sequence attack or other attacks. The experimental results in an ICS testbed demonstrate that our detection algorithm can detect sequence attack efficiently and recognize part of anomaly state of ICS equipment.
  • Related Articles

    [1]Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
    [2]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [3]Wang Meng, Wang Haofen, Li Bohan, Zhao Xiang, Wang Xin. Survey on Key Technologies of New Generation Knowledge Graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. DOI: 10.7544/issn1000-1239.20210829
    [4]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [5]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [6]Du Zhijuan, Du Zhirong, Wang Lu. Open Knowledge Graph Representation Learning Based on Neighbors and Semantic Affinity[J]. Journal of Computer Research and Development, 2019, 56(12): 2549-2561. DOI: 10.7544/issn1000-1239.2019.20190648
    [7]Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
    [8]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
    [9]Liu Zhiyuan, Sun Maosong, Lin Yankai, Xie Ruobing. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. DOI: 10.7544/issn1000-1239.2016.20160020
    [10]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
  • Cited by

    Periodical cited type(5)

    1. 张黎,骆春山,谢委员,李蓓蓓. 基于分支混淆算法的隐私数据库自适应加密方法. 计算机与现代化. 2022(03): 43-47 .
    2. 陈金娥,陈涛,童绪军. 基于混合加密算法的安全通讯系统的设计与实现. 兰州文理学院学报(自然科学版). 2022(05): 67-71+93 .
    3. 肖玉强,郭云飞,王亚文. 基于符号执行和N-scope复杂度的代码混淆度量方法. 网络与信息安全学报. 2022(06): 123-134 .
    4. 王晓龙,董玉雪. 软件多分支开发代码漏合问题及解决途径. 计算机系统应用. 2021(10): 312-318 .
    5. 鲍海燕,芦彩林,李俊丽. 基于公钥密码的通信网络安全加密系统设计. 重庆理工大学学报(自然科学). 2020(10): 146-152 .

    Other cited types(3)

Catalog

    Article views (1112) PDF downloads (484) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return