• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yong, Xie Shengnan, Zhong Zhiwei, Li Jinbao, Ren Qianqian. Topic-Interest Based Influence Maximization Algorithm in Social Networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. DOI: 10.7544/issn1000-1239.2018.20170672
Citation: Liu Yong, Xie Shengnan, Zhong Zhiwei, Li Jinbao, Ren Qianqian. Topic-Interest Based Influence Maximization Algorithm in Social Networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. DOI: 10.7544/issn1000-1239.2018.20170672

Topic-Interest Based Influence Maximization Algorithm in Social Networks

More Information
  • Published Date: October 31, 2018
  • Influence maximization is a problem of finding a small set of seed nodes in a social network that maximizes the spread scope of a propagation item. Existing works only take into account the topic distribution on propagation items, but ignore the interest distribution on users. This paper focuses on how to select the most influential seeds when both the topic distribution of propagation items and the interest distribution of users are taken into consideration. A topic-interest independent cascade (TI-IC) propagation model is proposed, and an expectation maximization (EM) algorithm is proposed to learn the parameters of the TI-IC model. Based on the TI-IC model, a topic-interest influence maximization (TIIM) problem is proposed, and a new heuristic algorithm called ACG-TIIM is presented to solve TIIM. ACG-TIIM first takes each user as a root node to construct a reachable path tree, roughly estimate the influence scope of each user, and then sorts all the users according to the estimated influence scope to select a small number of users as candidate seeds, finally uses the greedy algorithm with EFLF optimization to select the most influential seeds from candidate seeds. The experimental results on real datasets show that TI-IC model is superior to classical IC and TIC models in describing propagation law and predicting propagation results. ACG-TIIM can solve the TIIM problem effectively and efficiently.
  • Related Articles

    [1]Yue Guangxue, Chen Guanglu, Lu Min, Yang Xiaohui, Liu Jianhua, Huang Chunlan, Yang Zhongming. A Computation Offloading Algorithm with Path Selection Based on K-shell Influence Maximization[J]. Journal of Computer Research and Development, 2021, 58(9): 2025-2039. DOI: 10.7544/issn1000-1239.2021.20200338
    [2]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [3]Zhang Liqing, Guo Dong, Wu Shaoling, Cui Haibo, Wang Wei. An Ultra Lightweight Container that Maximizes Memory Sharing and Minimizes the Runtime Environment[J]. Journal of Computer Research and Development, 2019, 56(7): 1545-1555. DOI: 10.7544/issn1000-1239.2019.20180511
    [4]Yan Xiaoqiang, Ye Yangdong. Cross-Media Clustering by Share and Private Information Maximization[J]. Journal of Computer Research and Development, 2019, 56(7): 1370-1382. DOI: 10.7544/issn1000-1239.2019.20180470
    [5]Zhang Fenxiang, Chen Huahui, Qian Jiangbo, Dong Yihong. HSSM: A Hierarchical Method for Streaming Submodular Maximization[J]. Journal of Computer Research and Development, 2016, 53(8): 1792-1805. DOI: 10.7544/issn1000-1239.2016.20160140
    [6]Li Xiaokang, Zhang Xi, Sun Hao, Sun Guangzhong. Influence Maximization Across Multi-Channels in Social Network[J]. Journal of Computer Research and Development, 2016, 53(8): 1709-1718. DOI: 10.7544/issn1000-1239.2016.20160211
    [7]Guo Jingfeng, Lü Jiaguo. Influence Maximization Based on Information Preference[J]. Journal of Computer Research and Development, 2015, 52(2): 533-541. DOI: 10.7544/issn1000-1239.2015.20131311
    [8]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [9]Chen Hao and Wang Yitong. Threshold-Based Heuristic Algorithm for Influence Maximization[J]. Journal of Computer Research and Development, 2012, 49(10): 2181-2188.
    [10]Qi Yingjian, Luo Siwei, Huang Yaping, Li Aijun, Liu Yunhui. An Annealing Expectation Maximization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(4): 654-660.
  • Cited by

    Periodical cited type(6)

    1. Yourong Chen,Hao Chen,Zhenyu Xiong,Banteng Liu,Zhangquan Wang,Meng Han. Game theory attack pricing for mining pools in blockchain-based IoT. Digital Communications and Networks. 2024(04): 973-988 .
    2. 郭倩茸,段淑斐,谢捷,董雪燕,肖治术. 鸟声标注技术及其在被动声学监测中的应用. 生物多样性. 2024(10): 75-96 .
    3. 张春祥,唐利波,高雪瑶. 半监督卷积神经网络的词义消歧. 西南交通大学学报. 2022(01): 11-17+27 .
    4. 刘涛,马越,姜和芳,伍少成,王浩林. 一种网络舆情中的影响力评价模型研究. 电子技术与软件工程. 2022(14): 39-44 .
    5. 卢敏,陈光鲁,杨晓慧,黄淳岚,乐光学. 基于库仑力模型的动态社会网络积极影响力最大化算法. 电信科学. 2020(06): 107-118 .
    6. 陈光鲁,卢敏. 社会网络影响力最大化问题研究. 电脑知识与技术. 2019(32): 36-38 .

    Other cited types(11)

Catalog

    Article views (1056) PDF downloads (455) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return