• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009
Citation: Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009

Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem

More Information
  • Published Date: October 31, 2018
  • Based on colored traveling salesman problem (CTSP), this paper gives a more widely applicable combination optimization problem (COP) model named colored bottleneck traveling salesman problem (CBTSP), which can be used to model the planning problems with the partially overlapped workspace such as the route planning of persons and vehicles with cooperative and independent tasks. The objective function of these problems is different from the one of traveling salesman problems (TSPs), therefore it can’t be modeled by CTSP. Since CBTSP is NP-hard problem, for this kind of large scale problem, nature-inspired algorithms are good choice for solving it. Based on these, the paper proposes a nature-inspired algorithm to solve CBTSP, and the new algorithm named PSGA is a hybrid algorithm of particle swarm optimization (PSO), simulated annealing (SA) and genetic algorithm (GA) based on IT process. PSGA firstly uses dual-chromosome coding to generate solution of CBTSP, and then updates the solution by using the crossover operator of GA. During this process, the length of crossover is controlled by the activity intensity, which is affected by the particle radius and environment temperature. In order to test the effectiveness of PSGA algorithm, the paper makes experiments by using small scale to large scale CBTSP data, and the extensive experiments show that PSGA can demonstrate better solution quality than the compared algorithms.
  • Related Articles

    [1]Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
    [2]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [3]Wang Meng, Wang Haofen, Li Bohan, Zhao Xiang, Wang Xin. Survey on Key Technologies of New Generation Knowledge Graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. DOI: 10.7544/issn1000-1239.20210829
    [4]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [5]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [6]Du Zhijuan, Du Zhirong, Wang Lu. Open Knowledge Graph Representation Learning Based on Neighbors and Semantic Affinity[J]. Journal of Computer Research and Development, 2019, 56(12): 2549-2561. DOI: 10.7544/issn1000-1239.2019.20190648
    [7]Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
    [8]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
    [9]Liu Zhiyuan, Sun Maosong, Lin Yankai, Xie Ruobing. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. DOI: 10.7544/issn1000-1239.2016.20160020
    [10]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
  • Cited by

    Periodical cited type(5)

    1. 张黎,骆春山,谢委员,李蓓蓓. 基于分支混淆算法的隐私数据库自适应加密方法. 计算机与现代化. 2022(03): 43-47 .
    2. 陈金娥,陈涛,童绪军. 基于混合加密算法的安全通讯系统的设计与实现. 兰州文理学院学报(自然科学版). 2022(05): 67-71+93 .
    3. 肖玉强,郭云飞,王亚文. 基于符号执行和N-scope复杂度的代码混淆度量方法. 网络与信息安全学报. 2022(06): 123-134 .
    4. 王晓龙,董玉雪. 软件多分支开发代码漏合问题及解决途径. 计算机系统应用. 2021(10): 312-318 .
    5. 鲍海燕,芦彩林,李俊丽. 基于公钥密码的通信网络安全加密系统设计. 重庆理工大学学报(自然科学). 2020(10): 146-152 .

    Other cited types(3)

Catalog

    Article views (1313) PDF downloads (460) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return