• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009
Citation: Dong Xueshi, Dong Wenyong, Cai Yongle. Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2018, 55(11): 2372-2385. DOI: 10.7544/issn1000-1239.2018.20180009

Hybrid Algorithm for Colored Bottleneck Traveling Salesman Problem

More Information
  • Published Date: October 31, 2018
  • Based on colored traveling salesman problem (CTSP), this paper gives a more widely applicable combination optimization problem (COP) model named colored bottleneck traveling salesman problem (CBTSP), which can be used to model the planning problems with the partially overlapped workspace such as the route planning of persons and vehicles with cooperative and independent tasks. The objective function of these problems is different from the one of traveling salesman problems (TSPs), therefore it can’t be modeled by CTSP. Since CBTSP is NP-hard problem, for this kind of large scale problem, nature-inspired algorithms are good choice for solving it. Based on these, the paper proposes a nature-inspired algorithm to solve CBTSP, and the new algorithm named PSGA is a hybrid algorithm of particle swarm optimization (PSO), simulated annealing (SA) and genetic algorithm (GA) based on IT process. PSGA firstly uses dual-chromosome coding to generate solution of CBTSP, and then updates the solution by using the crossover operator of GA. During this process, the length of crossover is controlled by the activity intensity, which is affected by the particle radius and environment temperature. In order to test the effectiveness of PSGA algorithm, the paper makes experiments by using small scale to large scale CBTSP data, and the extensive experiments show that PSGA can demonstrate better solution quality than the compared algorithms.
  • Related Articles

    [1]Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295
    [2]Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376
    [3]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Du Ming, Yang Yun, Zhou Junfeng, Chen Ziyang, Yang Anping. Efficient Methods for Label-Constraint Reachability Query[J]. Journal of Computer Research and Development, 2020, 57(9): 1949-1960. DOI: 10.7544/issn1000-1239.2020.20190569
    [6]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [7]Song Pan, Jing Liping. Exploiting Label Relationships in Multi-Label Classification with Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(8): 1751-1759. DOI: 10.7544/issn1000-1239.2018.20180362
    [8]Ma Gang, Du Yuge, An Bo, Zhang Bo, Wang Wei, Shi Zhongzhi. Risk Evaluation of Complex Information System Based on Threat Propagation Sampling[J]. Journal of Computer Research and Development, 2015, 52(7): 1642-1659. DOI: 10.7544/issn1000-1239.2015.20140184
    [9]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [10]She Qiaoqiao, Yu Yang, Jiang Yuan, and Zhou Zhihua. Large-Scale Image Annotation via Random Forest Based Label Propagation[J]. Journal of Computer Research and Development, 2012, 49(11): 2289-2295.

Catalog

    Article views (1310) PDF downloads (460) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return