• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Lizhen, Meng Xiaofeng. Reachability Indexing for Large-Scale Graphs: Studies and Forecasts[J]. Journal of Computer Research and Development, 2015, 52(1): 116-129. DOI: 10.7544/issn1000-1239.2015.20131567
Citation: Fu Lizhen, Meng Xiaofeng. Reachability Indexing for Large-Scale Graphs: Studies and Forecasts[J]. Journal of Computer Research and Development, 2015, 52(1): 116-129. DOI: 10.7544/issn1000-1239.2015.20131567

Reachability Indexing for Large-Scale Graphs: Studies and Forecasts

More Information
  • Published Date: December 31, 2014
  • With the rapid development of social networks, biology, ontology and other emerging areas, there are a lot of graph data in real applications. Reachability query is one of the fundamental queries in graphs. For small graphs, depth-first search (DFS) or reachability transitive closure can answer reachability query easily. However, as graphs become larger and larger, above two approaches are no longer feasible, because the query time of DFS is very long and the storage cost of reachability transitive closure is very high. Therefore, lots of reachability indices have been proposed. These approaches have been widely applied in many areas of computer science, such as software engineering, programming languages, distributed computing, social network analysis, biological network analysis, XML database, RDF databases, routing planning and other fields. In addition, reachability indices can also speed up other graph algorithms, such as the shortest path queries and sub-graph matching. In this survey, applications of reachability indexing schemes are introduced firstly. Secondly, according to supported graph size, supported graph type and supported query type, we provide taxonomy of existing works. Then, we provide a comparison of representative works. Finally, we discuss the disadvantages of existing scalable reachability indexing schemes and put forward some suggestions for future research works.

Catalog

    Article views (1802) PDF downloads (1502) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return