• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Feng Qi, He Debiao, Luo Min, Li Li. Efficient Two-Party SM2 Signing Protocol for Mobile Internet[J]. Journal of Computer Research and Development, 2020, 57(10): 2136-2146. DOI: 10.7544/issn1000-1239.2020.20200401
Citation: Feng Qi, He Debiao, Luo Min, Li Li. Efficient Two-Party SM2 Signing Protocol for Mobile Internet[J]. Journal of Computer Research and Development, 2020, 57(10): 2136-2146. DOI: 10.7544/issn1000-1239.2020.20200401

Efficient Two-Party SM2 Signing Protocol for Mobile Internet

Funds: This work was supported by the National Key Research and Development Program of China (2018YFC1604000) and the National Natural Science Foundation of China (61932016, 61972294).
More Information
  • Published Date: September 30, 2020
  • Rapid development of wireless communication technology has greatly promoted the ubiquitousness of mobile devices. Mobile devices enable users to access Internet services anytime and anywhere. Because of the conjecture of the cyberspace, the digital signature is used as a kind of technique with the functionality of the integrity authentication, identification, and non-repudiation. However, mobile devices tend to be more easily lost or hijacked cause relatively weak protection on the private keys (the root of the digital signatures trust). To ensure the confidentiality of private keys, two-party signature is a viable method to avoid fraudulent key usage or key theft. Therefore, in this paper, we focus on the SM2 signature algorithm, which is standardized in GM/T 0003—2012“SM2 Elliptic Curve Public Key Cryptography”, and design a lightweight two-party SM2 signing protocol. Unlike standard secret sharing, a valid signature now is generated interactively between a client and a server, while the original key never being exposed. We mathematically prove the security of the proposed protocol. Findings from the performance evaluation of the protocol show that it achieves good performance, with a single signing operation taking 4.381ms for the client and being roughly equal to the original SM2 signature in the same testing environment.
  • Related Articles

    [1]Liu Weixin, Guan Yewei, Huo Jiarong, Ding Yuanchao, Guo Hua, Li Bo. A Fast and Secure Transformer Inference Scheme with Secure Multi-Party Computation[J]. Journal of Computer Research and Development, 2024, 61(5): 1218-1229. DOI: 10.7544/issn1000-1239.202330966
    [2]Zhao Chuan, Xu Jun. Secure Multi-Party Computation Based on Cut-and-Choose Technology[J]. Journal of Computer Research and Development, 2022, 59(8): 1800-1818. DOI: 10.7544/issn1000-1239.20210664
    [3]Guo Juanjuan, Wang Qiongxiao, Xu Xin, Wang Tianyu, Lin Jingqiang. Secure Multiparty Computation and Application in Machine Learning[J]. Journal of Computer Research and Development, 2021, 58(10): 2163-2186. DOI: 10.7544/issn1000-1239.2021.20210626
    [4]Liu Feng, Yang Jie, Li Zhibin, Qi Jiayin. A Secure Multi-Party Computation Protocol for Universal Data Privacy Protection Based on Blockchain[J]. Journal of Computer Research and Development, 2021, 58(2): 281-290. DOI: 10.7544/issn1000-1239.2021.20200751
    [5]Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426
    [6]Zhou Jun, Shen Huajie, Lin Zhongyun, Cao Zhenfu, Dong Xiaolei. Research Advances on Privacy Preserving in Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(10): 2027-2051. DOI: 10.7544/issn1000-1239.2020.20200614
    [7]Jiang Han, Xu Qiuliang. Advances in Key Techniques of Practical Secure Multi-Party Computation[J]. Journal of Computer Research and Development, 2015, 52(10): 2247-2257. DOI: 10.7544/issn1000-1239.2015.20150763
    [8]Zhang En, Cai Yongquan. Rational Secure Two-Party Computation Protocol[J]. Journal of Computer Research and Development, 2013, 50(7): 1409-1417.
    [9]Wang Ke and Dai Yiqi. Secure Multiparty Computation of Statistical Distribution[J]. Journal of Computer Research and Development, 2010, 47(2): 201-206.
    [10]Li Shundong, Si Tiange, and Dai Yiqi. Secure Multi-Party Computation of Set-Inclusion and Graph-Inclusion[J]. Journal of Computer Research and Development, 2005, 42(10): 1647-1653.
  • Cited by

    Periodical cited type(18)

    1. 李红艳,徐寅森,张子栋. 蜂窝移动网络大数据聚类异常挖掘方法仿真. 计算机仿真. 2024(02): 406-409+414 .
    2. 程一帆,刘擎宇,梁泽宇,于昇. 严格可证明安全的两方协同SM2签名协议. 电子学报. 2024(02): 540-549 .
    3. 彭金辉,张志鸿. 面向软件的随机数发生器设计和实现. 计算机工程与设计. 2024(04): 1004-1010 .
    4. 涂彬彬,陈宇. 支持批量证明的SM2适配器签名及其分布式扩展. 软件学报. 2024(05): 2566-2582 .
    5. 荆继武,张世聪,王平建. 门限密码技术及其标准化进展. 密码学报(中英文). 2024(01): 227-254 .
    6. 高文娟. 移动电子签名认证服务在医院信息化的应用. 电脑知识与技术. 2024(21): 83-85 .
    7. 韩庆迪,陆思奇. 基于SOTP加密保护签名私钥的SM2签名方案. 密码学报(中英文). 2024(05): 991-1002 .
    8. 包子健,何德彪,彭聪,罗敏,黄欣沂. 基于SM2数字签名算法的可否认环签名. 密码学报. 2023(02): 264-275 .
    9. 文嘉明,王后珍,刘金会,张焕国. Aitps:基于非对称模格问题的两方协同签名方案. 计算机研究与发展. 2023(09): 2137-2151 . 本站查看
    10. 蔡昭炜,刘从军,刘超. 基于SM2的不动产柜面无纸化签署系统设计与实现. 智能计算机与应用. 2023(09): 122-128 .
    11. 黎洪亮,金华标,庞启君,赵钊. 内嵌SM2算法的内河船机排放数据加密通信装置设计. 农业装备与车辆工程. 2023(10): 28-31+37 .
    12. 彭金辉,雷宗华,张志鸿. ECDSA协同签名方案设计与实现. 信息安全研究. 2023(11): 1120-1130 .
    13. 徐子钧,刘建伟,李耕. 面向5G mMTC的网络切片安全研究. 网络与信息安全学报. 2022(01): 95-105 .
    14. 苏簪铀,马振华,王志洋. 基于协同签名的电网移动GIS签名系统的设计与实现. 农村电气化. 2022(04): 50-53 .
    15. 赵秀凤,付雨. Aigis-sig方案的门限数字签名协议研究. 密码学报. 2022(05): 872-882 .
    16. 白雪,秦宝东,郭瑞,郑东. 基于SM2的两方协作盲签名协议. 网络与信息安全学报. 2022(06): 39-51 .
    17. 杨伊,何德彪,文义红,罗敏. 密钥管理服务系统下的多方协同SM4加/解密方案. 信息网络安全. 2021(08): 17-25 .
    18. 彭聪,罗敏,何德彪,黄欣沂. 基于SM2数字签名算法的适配器签名方案. 计算机研究与发展. 2021(10): 2278-2286 . 本站查看

    Other cited types(7)

Catalog

    Article views (1394) PDF downloads (576) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return