• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Shuyi, Xi Zhengjun. Quantum Hypothesis Testing Mutual Information[J]. Journal of Computer Research and Development, 2021, 58(9): 1906-1914. DOI: 10.7544/issn1000-1239.2021.20210346
Citation: Zhang Shuyi, Xi Zhengjun. Quantum Hypothesis Testing Mutual Information[J]. Journal of Computer Research and Development, 2021, 58(9): 1906-1914. DOI: 10.7544/issn1000-1239.2021.20210346

Quantum Hypothesis Testing Mutual Information

Funds: This work was supported by the National Natural Science Foundation of China (61671280), the Fundamental Research Funds for the Central Universities (GK201902007), and the Funded Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG013).
More Information
  • Published Date: August 31, 2021
  • von Neumann mutual information is a generalization of Shannon mutual information in quantum information theory, and it has been found to have useful applications in the channel capacity. The many classical quantifiers can be extended for pairs of quantum states in various inequivalent ways, due to the non-commutativity of quantum states. Quantum hypothesis testing relative entropy comes from the hypothesis testing question, and it is one of the most fundamental primitives in quantum information processing. We discuss the quantum mutual information with respect to quantum hypothesis testing relative entropy. We give some properties of quantum hypothesis testing relative entropy, and give the relationships between it and other quantum generalized entropies. Using relative entropy, we define quantum hypothesis testing mutual information, and exhibit some properties, such as, data processing inequality. Using the sum between mutual information and condition entropy, we discuss the chain rules, which are generally an important technical tool in information theory.
  • Related Articles

    [1]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [2]Zhang Long, Wang Jinsong. DDoS Attack Detection Model Based on Information Entropy and DNN in SDN[J]. Journal of Computer Research and Development, 2019, 56(5): 909-918. DOI: 10.7544/issn1000-1239.2019.20190017
    [3]Zhou Yanhong, Zhang Xianyong, Mo Zhiwen. Conditional Neighborhood Entropy with Granulation Monotonicity and Its Relevant Attribute Reduction[J]. Journal of Computer Research and Development, 2018, 55(11): 2395-2405. DOI: 10.7544/issn1000-1239.2018.20170607
    [4]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [5]Zhao Xingwang, Liang Jiye. An Attribute Weighted Clustering Algorithm for Mixed Data Based on Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(5): 1018-1028. DOI: 10.7544/issn1000-1239.2016.20150131
    [6]Zhu Yan, Jing Liping, and Yu Jian. An Active Labeling Method for Text Data Based on Nearest Neighbor and Information Entropy[J]. Journal of Computer Research and Development, 2012, 49(6): 1306-1312.
    [7]Deng Xiaolong, Wang Bai, Wu Bin, and Yang Shengqi. Modularity Modeling and Evaluation in Community Detecting of Complex Network Based on Information Entropy[J]. Journal of Computer Research and Development, 2012, 49(4): 725-734.
    [8]Ni Weiwei, Chen Geng, Lu Jieping, Wu Yingjie, Sun Zhihui. Local Entropy Based Weighted Subspace Outlier Mining Algorithm[J]. Journal of Computer Research and Development, 2008, 45(7): 1189-1194.
    [9]Xiong Zhongmin, Hao Zhongxiao. An Approach to Termination Decision for a Rule Set Based on Activation Path and Conditional Formula[J]. Journal of Computer Research and Development, 2006, 43(5): 901-907.
    [10]Wang Xizhao and An Sufang. Research on Learning Weights of Fuzzy Production Rules Based on Maximum Fuzzy Entropy[J]. Journal of Computer Research and Development, 2006, 43(4): 673-678.

Catalog

    Article views (490) PDF downloads (172) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return