• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Shuyi, Xi Zhengjun. Quantum Hypothesis Testing Mutual Information[J]. Journal of Computer Research and Development, 2021, 58(9): 1906-1914. DOI: 10.7544/issn1000-1239.2021.20210346
Citation: Zhang Shuyi, Xi Zhengjun. Quantum Hypothesis Testing Mutual Information[J]. Journal of Computer Research and Development, 2021, 58(9): 1906-1914. DOI: 10.7544/issn1000-1239.2021.20210346

Quantum Hypothesis Testing Mutual Information

Funds: This work was supported by the National Natural Science Foundation of China (61671280), the Fundamental Research Funds for the Central Universities (GK201902007), and the Funded Projects for the Academic Leaders and Academic Backbones, Shaanxi Normal University (16QNGG013).
More Information
  • Published Date: August 31, 2021
  • von Neumann mutual information is a generalization of Shannon mutual information in quantum information theory, and it has been found to have useful applications in the channel capacity. The many classical quantifiers can be extended for pairs of quantum states in various inequivalent ways, due to the non-commutativity of quantum states. Quantum hypothesis testing relative entropy comes from the hypothesis testing question, and it is one of the most fundamental primitives in quantum information processing. We discuss the quantum mutual information with respect to quantum hypothesis testing relative entropy. We give some properties of quantum hypothesis testing relative entropy, and give the relationships between it and other quantum generalized entropies. Using relative entropy, we define quantum hypothesis testing mutual information, and exhibit some properties, such as, data processing inequality. Using the sum between mutual information and condition entropy, we discuss the chain rules, which are generally an important technical tool in information theory.
  • Related Articles

    [1]Zhang Long, Wang Jinsong. DDoS Attack Detection Model Based on Information Entropy and DNN in SDN[J]. Journal of Computer Research and Development, 2019, 56(5): 909-918. DOI: 10.7544/issn1000-1239.2019.20190017
    [2]Zhou Yanhong, Zhang Xianyong, Mo Zhiwen. Conditional Neighborhood Entropy with Granulation Monotonicity and Its Relevant Attribute Reduction[J]. Journal of Computer Research and Development, 2018, 55(11): 2395-2405. DOI: 10.7544/issn1000-1239.2018.20170607
    [3]Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
    [4]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [5]Tang Liangrui, Chen Yuanyuan, and Feng Sen. A Chain Routing Algorithm Based on Evidence Theory in Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2013, 50(7): 1362-1369.
    [6]Xu Junling, Zhou Yuming, Chen Lin, Xu Baowen. An Unsupervised Feature Selection Approach Based on Mutual Information[J]. Journal of Computer Research and Development, 2012, 49(2): 372-382.
    [7]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [8]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [9]Xiong Zhongmin, Hao Zhongxiao. An Approach to Termination Decision for a Rule Set Based on Activation Path and Conditional Formula[J]. Journal of Computer Research and Development, 2006, 43(5): 901-907.
    [10]Wang Xizhao and An Sufang. Research on Learning Weights of Fuzzy Production Rules Based on Maximum Fuzzy Entropy[J]. Journal of Computer Research and Development, 2006, 43(4): 673-678.
  • Cited by

    Periodical cited type(9)

    1. 郭豆豆,徐伟华. R-FCCL:一种面向高维数据的稳健模糊概念认知学习方法. 计算机研究与发展. 2025(02): 383-396 . 本站查看
    2. 刘彧轩,廖宇晨,刘忠慧. 单条件三元概念构建及其融合推荐应用. 计算机与现代化. 2024(07): 1-6 .
    3. 李金海,王坤,陈强强. 三元概念的分布式并行构造算法. 模式识别与人工智能. 2024(10): 873-886 .
    4. 王霞,全园,李俊余,吴伟志. 三元概念的增量式构造方法. 南京大学学报(自然科学). 2022(01): 19-28 .
    5. 刘忠慧,赵琦,邹璐,闵帆. 三元概念的启发式构建及其在社会化推荐中的应用. 计算机科学. 2021(06): 234-240 .
    6. 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化. 山东大学学报(理学版). 2020(05): 1-12 .
    7. 李俊余,李星璇,王霞,吴伟志. 基于三元因子分析的三元概念约简. 南京大学学报(自然科学). 2020(04): 480-493 .
    8. 李金海,魏玲,张卓,翟岩慧,张涛,智慧来,米允龙. 概念格理论与方法及其研究展望. 模式识别与人工智能. 2020(07): 619-642 .
    9. 王霞,谭斯文,李俊余,吴伟志. 基于条件属性蕴含的概念格构造及简化. 南京大学学报(自然科学). 2019(04): 553-563 .

    Other cited types(5)

Catalog

    Article views (496) PDF downloads (172) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return