• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Qiang, Ye Ayong, Ye Guohua, Deng Huina, Chen Aimin. k-Anonymous Data Privacy Protection Mechanism Based on Optimal Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1625-1635. DOI: 10.7544/issn1000-1239.20210117
Citation: Zhang Qiang, Ye Ayong, Ye Guohua, Deng Huina, Chen Aimin. k-Anonymous Data Privacy Protection Mechanism Based on Optimal Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1625-1635. DOI: 10.7544/issn1000-1239.20210117

k-Anonymous Data Privacy Protection Mechanism Based on Optimal Clustering

Funds: This work was supported by the National Natural Science Foundation of China (61972096, 61771140, 61872088, 61872090) and the University-Industry Cooperation of Fujian Province (2022H6025).
More Information
  • Published Date: June 30, 2022
  • The emerging technologies about big data enable many organizations to collect massive amount information about individuals. Sharing such a wealth of information presents enormous opportunities for data mining applications, data privacy has been a major barrier. k-anonymity based on clustering is the most important technique to prevent privacy disclosure in data-sharing, which can overcome the threat of background based attacks and link attacks. Existing anonymity methods achieve the balance with privacy and utility requirements by seeking the optimal k-equivalence set. However, viewing the results as a whole, k-equivalent set is not necessarily the optimal solution satisfying k-anonymity so that the utility optimality is not guaranteed. In this paper, we endeavor to solve this problem by using optimal clustering approach. We follow this idea and propose a greedy clustering-anonymity method by combining the greedy algorithm and dichotomy clustering algorithm. In addition, we formulate the optimal data release problem that minimizes information loss given a privacy constraint. We also establish the functional relationship between data distance and information loss to capture the privacy/accuracy trade-off process in an online way. Finally, we evaluate the mechanism through theoretic analysis and experiments verification. Evaluations using real datasets show that the proposed method can minimize the information loss and be effective in terms of running time.
  • Related Articles

    [1]Wang Xiujun, Mo Lei, Zheng Xiao, Wei Linna, Dong Jun, Liu Zhi, Guo Longkun. Sampling Based Fast Publishing Algorithm with Differential Privacy for Data Stream[J]. Journal of Computer Research and Development, 2024, 61(10): 2433-2447. DOI: 10.7544/issn1000-1239.202440481
    [2]Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465
    [3]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [4]Hu Xinping, He Yuzhi, Ni Weiwei, and Zhang Yong. A Privacy-Preserving Data Publishing Method Based on Genetic Algorithm with Roulette Wheel[J]. Journal of Computer Research and Development, 2012, 49(11): 2432-2439.
    [5]Xiong Ping, Zhu Tianqing. A Data Anonymization Approach Based on Impurity Gain and Hierarchical Clustering[J]. Journal of Computer Research and Development, 2012, 49(7): 1545-1552.
    [6]Ni Weiwei, Chen Geng, Chong Zhihong, Wu Yingjie. Privacy-Preserving Data Publication for Clustering[J]. Journal of Computer Research and Development, 2012, 49(5): 1095-1104.
    [7]Xu Yong, Qin Xiaolin, Yang Yitao, Yang Zhongxue, Huang Can. A QI Weight-Aware Approach to Privacy Preserving Publishing Data Set[J]. Journal of Computer Research and Development, 2012, 49(5): 913-924.
    [8]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [9]Song Jinling, Liu Guohua, Huang Liming, Zhu Caiyun. Algorithms to Find the Set of Relevant Views and Quasi-Identifiers for K-Anonymity Method[J]. Journal of Computer Research and Development, 2009, 46(1): 77-88.
    [10]Liu Guohua, Song Jinling, Huang Liming, Zhao Danfeng, Song Li. Measurement and Elimination of Information Disclosure in Publishing Views[J]. Journal of Computer Research and Development, 2007, 44(7): 1227-1235.
  • Cited by

    Periodical cited type(9)

    1. 符太东,李育强. 基于联邦学习算法的复杂网络大数据隐私保护. 计算机仿真. 2024(06): 498-502 .
    2. 翟冉,陈学斌,张国鹏,裴浪涛,马征. 基于不同敏感度的改进K-匿名隐私保护算法. 计算机应用. 2023(05): 1497-1503 .
    3. 张星,张兴,王晴阳. DP-IMKP:满足个性化差分隐私的数据发布保护方法. 计算机工程与应用. 2023(10): 288-298 .
    4. 王涛,谭虎,徐亭亭,辛保江,刘刚,周潘. 基于迭代二分聚类的K-匿名机制. 信息安全研究. 2023(05): 402-411 .
    5. 姚崇兵,姚国章. 基于动态奖惩机制下数据交易平台隐私监管的演化博弈研究. 生产力研究. 2023(07): 23-30 .
    6. 史伟,王园园,李刚,张兴. 基于KFCMSA的(k, l)加权社交网络匿名算法. 计算机应用研究. 2023(10): 3149-3154 .
    7. 蒋浩英,钱进,王滔滔,洪承鑫,余鹰. 基于三支决策的新型分类匿名模型. 南京大学学报(自然科学). 2023(06): 970-980 .
    8. 衲钦,张慧春. 数智环境下匿名数据治理创新对策研究. 科学管理研究. 2022(02): 124-130 .
    9. 李啸林,章红艳,许佳钰,许力,黄赞. 基于节点1-邻居图相似性的社会网络匿名技术. 计算机系统应用. 2022(11): 21-30 .

    Other cited types(13)

Catalog

    Article views (294) PDF downloads (152) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return