• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376
Citation: Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376

Few-Shot Image Classification Based on Multi-Scale Label Propagation

Funds: This work was supported by the National Natural Science Foundation of China (61673085).
More Information
  • Published Date: June 30, 2022
  • Under the condition of few-shot, due to the problem of low data, in other words, the labeled data is rare and difficult to gather, it is very difficult to train a good classifier by traditional deep learning. In recent researches, the method based on measuring low level local information and TPN(transductive propagation network) has achieved good classification results. Moreover, local information can measure the relation between features well, but the problem of low data still exists. In order to solve the issue of low data, MSLPN (multi-scale label propagation network) based on TPN is proposed in this paper. The core idea of the method is to use a multi-scale generator to generate image features of multiple scales, obtain the similarity scores of samples with different scale features through the relational measurement module, and obtain classification results by integrating similarity scores at different scales. Specifically, the method firstly generates multiple image features of different scales through a multi-scale generator. And then, the similarity scores of the multi-scale information are used for label propagation. Finally, classification results are obtained by calculating the multi-scale label propagation results. Compared with TPN, in miniImageNet, the classification accuracy of 5-way 1-shot and 5-way 5-shot settings is increased by 2.77% and 4.02% respectively. While in tieredImageNet, the classification accuracy of 5-way 1-shot and 5-way 5-shot settings is increased by 1.16% and 1.27% respectively. The experimental results show that the proposed method in this paper can effectively improve the classification accuracy by using multi-scale feature information.
  • Related Articles

    [1]Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295
    [2]Han Jingyu, Chen Wei, Zhao Jing, Lang Hang, Mao Yi. A Label Cleaning Method of ECG Data Based on Abnormality-Feature Patterns[J]. Journal of Computer Research and Development, 2023, 60(11): 2594-2610. DOI: 10.7544/issn1000-1239.202220334
    [3]Zhang Lu, Cao Feng, Liang Xinyan, Qian Yuhua. Cross-Modal Retrieval with Correlation Feature Propagation[J]. Journal of Computer Research and Development, 2022, 59(9): 1993-2002. DOI: 10.7544/issn1000-1239.20210475
    [4]Cheng Yusheng, Zhang Lulu, Wang Yibin, Pei Gensheng. Label-Specific Features Learning for Feature-Specific Labels Association Mining[J]. Journal of Computer Research and Development, 2021, 58(1): 34-47. DOI: 10.7544/issn1000-1239.2021.20190674
    [5]Hai Mo, Zhu Jianming. A Propagation Mechanism Combining an Optimal Propagation Path and Incentive in Blockchain Networks[J]. Journal of Computer Research and Development, 2019, 56(6): 1205-1218. DOI: 10.7544/issn1000-1239.2019.20180419
    [6]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [7]Song Pan, Jing Liping. Exploiting Label Relationships in Multi-Label Classification with Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(8): 1751-1759. DOI: 10.7544/issn1000-1239.2018.20180362
    [8]Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
    [9]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [10]She Qiaoqiao, Yu Yang, Jiang Yuan, and Zhou Zhihua. Large-Scale Image Annotation via Random Forest Based Label Propagation[J]. Journal of Computer Research and Development, 2012, 49(11): 2289-2295.
  • Cited by

    Periodical cited type(5)

    1. 张琪东,迟静,陈玉妍,张彩明. 基于雾浓度分类与暗-亮通道先验的多分支去雾网络. 计算机研究与发展. 2024(03): 762-779 . 本站查看
    2. 苟光磊,朱东华,李小菲,韩岩奇. 深度掩膜布朗距离协方差小样本分类方法. 计算机应用研究. 2024(07): 2229-2234 .
    3. 韩岩奇,苟光磊,李小菲,朱东华. 融合多粒度注意力特征的小样本分类模型. 计算机应用研究. 2024(07): 2235-2240 .
    4. 潘雪玲,李国和,郑艺峰. 面向深度网络的小样本学习综述. 计算机应用研究. 2023(10): 2881-2888+2895 .
    5. 田晟兆,胡迎茜,谷成,陈端兵. 知识与数据联合驱动建模技术综述. 电子科技大学学报. 2023(06): 932-943 .

    Other cited types(8)

Catalog

    Article views (312) PDF downloads (234) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return