Citation: | Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295 |
As the non-invasive analyzing media, electroencephalogram (EEG) signals are widely applied in brain-computer interfaces, dysfunctional disorder diagnosis and rehabilitation. However, the techniques used in such applications are supervised and completely require EEG labels, like classification. Meanwhile, with the ever-increasing of unlabeled EEG emerged in these applications, traditional supervised techniques are becoming inapplicable, which probably degrades the development of this new-type unlabeled EEG in the emerging potential fields. To deal with the issue of unsupervised analysis for unlabeled EEG signals, we propose a multiple regularization constrained pseudo label propagation optimization model, which integrates the pseudo label propagation learning, EEG similarity adjacency matrix approximation, and label classifier learning. Subsequently, to pursuit the goal of EEG clustering with the proposed model, we transform the model to a multi-objective optimization function and propose a gradient descent-based algorithm named EEGapc (electroencephalogram clustering with pseudo label propagation) to solve it. EEGapc not only can make best use of messages passing through pairwise EEG signals in EEG-constructed graph, but can also quickly converge to its local optima. Experimental results by comparing EEGapc with 8 different types of state-of-the-art clustering algorithms on 14 real-world EEG data sets clearly demonstrate the superiority of EEGapc, and its performances with respect to average NMI (normalized mutual information), ARI (adjusted rand index), F-score and kappa are at least improved by 86.88%, 58.01%, 6.29%, 61.17%, respectively.
[1] |
Glasser M F, Coalson T S, Robinson E C, et al. A multi-modal parcellation of human cerebral cortex[J]. Nature, 2016, 536(7615): 171−178 doi: 10.1038/nature18933
|
[2] |
Furui A, Onishi R, Takeuchi A, et al. Non-gaussianity detection of EEG signals based on a multivariate scale mixture model for diagnosis of epileptic seizures[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(2): 515−525 doi: 10.1109/TBME.2020.3006246
|
[3] |
Yu Haitao, Lei Xinyu, Song Zhenxi, et al. Supervised network-based fuzzy learning of EEG signals for Alzheimer's disease identification[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(1): 60−71 doi: 10.1109/TFUZZ.2019.2903753
|
[4] |
Jayaram V, Widmann N, Forster C, et al. Brain-computer interfacing in amyotrophic lateral sclerosis: Implications of a resting-state EEG analysis [C]// Proc of the 37th Annual Int Conf of the IEEE Engineering in Medicine and Biology Society. Piscataway, NJ: IEEE, 2015: 6979−6982
|
[5] |
Ali Shah S A, Zhang Lei, Bais A. Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals[J]. Neural Networks, 2020, 130: 75−84 doi: 10.1016/j.neunet.2020.06.018
|
[6] |
梁旭, 王卫群, 侯增广, 等. 康复机器人的人机交互控制方法[J]. 中国科学: 信息科学, 2018, 48(1): 24−46
Liang Xu, Wang Weiqun, Hou Zengguang, et al. Interactive control methods for rehabilitation robot [J]. SCIENTIA SINICA Informationis, 2018, 48(1): 24−46 (in Chinese)
|
[7] |
Willett F R, Avansino D T, Hochberg L R, et al. High-performance brain-to-text communication via handwriting[J]. Nature, 2021, 593(7858): 249−254 doi: 10.1038/s41586-021-03506-2
|
[8] |
Gao Zhongke, Dang Weidong, Liu Mingxu, et al. Classification of EEG signals on VEP-based BCI systems with broad learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(11): 7143−7151 doi: 10.1109/TSMC.2020.2964684
|
[9] |
Miranda R A, Casebeer W D, Hein A M, et al. DARPA-funded efforts in the development of novel brain-computer interface technologies[J]. Journal of Neuroscience Methods, 2015, 244: 52−67 doi: 10.1016/j.jneumeth.2014.07.019
|
[10] |
Binnendijk A, Marler T, Bartels E M. Brain-Computer Interfaces: US Military Applications and Implications, an Initial Assessment [M]. Santa Monica, CA: RAND Corporation, 2020
|
[11] |
Li Ren, Johansen J S, Ahmed H, et al. The perils and pitfalls of block design for EEG classification experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 316−333
|
[12] |
Dai Chenglong, Wu Jia, Pi Dechang, et al. Electroencephalogram signal clustering with convex cooperative games[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5755−5769 doi: 10.1109/TKDE.2021.3060742
|
[13] |
Dai Chenglong, Pi Dechang, Cui Lin, et al. MTEEGC: A novel approach for multi-trial EEG clustering[J]. Applied Soft Computing, 2018, 71: 255−267 doi: 10.1016/j.asoc.2018.07.006
|
[14] |
Wahlberg P, Lantz G. Methods for robust clustering of Epileptic EEG spikes[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(7): 857−868 doi: 10.1109/10.846679
|
[15] |
Dai Chenglong, Wu Jia, Pi Dechang, et al. Brain EEG time-series clustering using maximum-weight clique[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 357−371 doi: 10.1109/TCYB.2020.2974776
|
[16] |
Selim S Z, Ismail M A. K-means-type algorithms: A generalized convergence theorem and characterization of local optimality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(1): 81−87
|
[17] |
Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding [C]// Proc of the 18th Annual ACM-SIAM Symp on Discrete Algorithms. Philadelphia, PA: SIAM, 2007: 1027−1035
|
[18] |
Nock R, Canyasse R, Boreli R, et al. k-variates++: More pluses in the k-means++ [C]// Proc of the 33rd Int Conf on Machine Learning. Cambridge, MA: MIT, 2016: 145−154
|
[19] |
Nie Feiping, Wang Chenglong, Li Xuelong. K-multiple-means: A multiple-means clustering method with specified k clusters [C]// Proc of the 25th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2019: 959−967
|
[20] |
Petitjean F, Ketterlin A, Gancarski P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44(3): 678−693 doi: 10.1016/j.patcog.2010.09.013
|
[21] |
Yang J, Leskovec J. Patterns of temporal variation in online media [C]// Proc of the 4th Int Conf on Web Search and Web Data Mining. New York: ACM, 2011: 177−186
|
[22] |
Ester M, Kriegel H P, Sander J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// Proc of the 2nd Int Conf on Knowledge Discovery and Data Mining. Palo Alto, CA: AAAI, 1996: 226−231
|
[23] |
Ankerst M, Breunig M M, Kriegel H P, et al. OPTICS: Ordering points to identify the clustering structure [C]// Proc of the 1999 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 1999: 49−60
|
[24] |
Ertőz L, Steinbach M, Kumar V, et al. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data [C]// Proc of the 3rd SIAM Int Conf on Data Mining. Philadelphia, PA: SIAM, 2003: 47−58
|
[25] |
陈叶旺,申莲莲,钟才明,等. 密度峰值聚类算法综述[J]. 计算机研究与发展,2020,57(2):378−394 doi: 10.7544/issn1000-1239.2020.20190104
Chen Yewang, Shen Lianlian, Zhong Caiming, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378−394 (in Chinese) doi: 10.7544/issn1000-1239.2020.20190104
|
[26] |
Rodriguez A, Laio A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492−1496 doi: 10.1126/science.1242072
|
[27] |
Ren Yazhou, Hu Xiaohui, Shi Ke, et al. Semi-supervised DenPeak clustering with pairwise constraints [C]// Proc of the 15th Pacific Rim Int Conf on Artificial Intelligence. Berlin: Springer, 2018: 837−850
|
[28] |
Li Zechao, Yang Yi, Liu Jing, et al. Unsupervised feature selection using nonnegative spectral analysis [C]// Proc of the 26th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2012: 1016−1032
|
[29] |
Qian Mingjie, Zhai Chengxiang. Robust unsupervised feature selection [C]// Proc of the 23rd Int Joint Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2013: 1621−1627
|
[30] |
Shi Lei, Du Liang, Shen Yidong. Robust spectral learning for unsupervised feature selection [C]// Proc of the 2014 IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2014: 977−982
|
[31] |
Li Zechao, Liu Jing, Yang Yi, et al. Clustering-guided sparse structural learning for unsupervised feature selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2138−2150 doi: 10.1109/TKDE.2013.65
|
[32] |
Zakaria J, Mueen A, Keogh E. Clustering time series using unsupervised-shapelets [C]// Proc of the 12th IEEE Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2012: 785−794
|
[33] |
Zhang Qin, Wu Jia, Zhang Peng, et al. Salient subsequence learning for time series clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9): 2193−2207 doi: 10.1109/TPAMI.2018.2847699
|
[34] |
Paparrizos J, Gravano L. k-shape: Efficient and accurate clustering of time series [C]// Proc of the 2015 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2015: 1855−1870
|
[35] |
Song Kun, Yao Xiwen, Nie Feiping, et al. Weighted bilateral K-means algorithm for fast co-clustering and fast spectral clustering[J]. Pattern Recognition, 2021, 109: 107560 doi: 10.1016/j.patcog.2020.107560
|
[36] |
Huang Dong, Wang Changdong, Wu Jiansheng, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6): 1212−1226 doi: 10.1109/TKDE.2019.2903410
|
[37] |
Rodriguez-Lujan I, Huerta R, Elkan C, et al. Quadratic programming feature selection[J]. Journal of Machine Learning Research, 2010, 11(2): 1491−1516
|
[38] |
Das K C. The Laplacian spectrum of a graph[J]. Computers and Mathematics with Applications, 2004, 48(5-6): 715−724 doi: 10.1016/j.camwa.2004.05.005
|
[39] |
von Luxburg U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395−416 doi: 10.1007/s11222-007-9033-z
|
[40] |
Frey B J, Dueck S. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972−976 doi: 10.1126/science.1136800
|
[41] |
Zhou Dengyong, Bousquet O, Navin Lal T, et al. Learning with local and global consistency [C]// Proc of the 16th Int Conf on Neural Information Processing Systems. Cambridge, MA: MIT, 2003: 321−328
|
[42] |
Boyd S, Vandenberghe L. Convex Optimization [M]. Cambridge, MA: Cambridge University Press, 2004
|
[43] |
Zhang Hui, Ho Tubao, Zhang Yang, et al. Unsupervised feature extraction for time series clustering using orthogonal wavelet transform[J]. Informatica, 2006, 30(3): 305−319
|
[44] |
Hubert L, Arabie P. Comparing partitions[J]. Journal of Classification, 1985, 2(1): 193−218 doi: 10.1007/BF01908075
|
[45] |
van Rijsbergen C J. Information Retrieval [M]. London: Butterworth-Heinemann, 1979
|
[46] |
Fleiss J L. Measuring nominal scale agreement among many raters[J]. Psychological Bulletin, 1971, 76(5): 378−382 doi: 10.1037/h0031619
|
[1] | Cao Yiran, Zhu Youwen, He Xingyu, Zhang Yue. Utility-Optimized Local Differential Privacy Set-Valued Data Frequency Estimation Mechanism[J]. Journal of Computer Research and Development, 2022, 59(10): 2261-2274. DOI: 10.7544/issn1000-1239.20220504 |
[2] | Hong Jinxin, Wu Yingjie, Cai Jianping, Sun Lan. Differentially Private High-Dimensional Binary Data Publication via Attribute Segmentation[J]. Journal of Computer Research and Development, 2022, 59(1): 182-196. DOI: 10.7544/issn1000-1239.20200701 |
[3] | Wu Wanqing, Zhao Yongxin, Wang Qiao, Di Chaofan. A Safe Storage and Release Method of Trajectory Data Satisfying Differential Privacy[J]. Journal of Computer Research and Development, 2021, 58(11): 2430-2443. DOI: 10.7544/issn1000-1239.2021.20210589 |
[4] | Zhang Yuxuan, Wei Jianghong, Li Ji, Liu Wenfen, Hu Xuexian. Graph Degree Histogram Publication Method with Node-Differential Privacy[J]. Journal of Computer Research and Development, 2019, 56(3): 508-520. DOI: 10.7544/issn1000-1239.2019.20170886 |
[5] | Zhu Weijun, You Qingguang, Yang Weidong, Zhou Qinglei. Trajectory Privacy Preserving Based on Statistical Differential Privacy[J]. Journal of Computer Research and Development, 2017, 54(12): 2825-2832. DOI: 10.7544/issn1000-1239.2017.20160647 |
[6] | Wu Yingjie, Zhang Liqun, Kang Jian, Wang Yilei. An Algorithm for Differential Privacy Streaming Data Adaptive Publication[J]. Journal of Computer Research and Development, 2017, 54(12): 2805-2817. DOI: 10.7544/issn1000-1239.2017.20160555 |
[7] | Wang Liang, Wang Weiping, Meng Dan. Privacy Preserving Data Publishing via Weighted Bayesian Networks[J]. Journal of Computer Research and Development, 2016, 53(10): 2343-2353. DOI: 10.7544/issn1000-1239.2016.20160465 |
[8] | Lu Guoqing, Zhang Xiaojian, Ding Liping, Li Yanfeng, Liao Xin. Frequent Sequential Pattern Mining under Differential Privacy[J]. Journal of Computer Research and Development, 2015, 52(12): 2789-2801. DOI: 10.7544/issn1000-1239.2015.20140516 |
[9] | Ouyang Jia, Yin Jian, Liu Shaopeng, Liu Yubao. An Effective Differential Privacy Transaction Data Publication Strategy[J]. Journal of Computer Research and Development, 2014, 51(10): 2195-2205. DOI: 10.7544/issn1000-1239.2014.20130824 |
[10] | Ni Weiwei, Chen Geng, Chong Zhihong, Wu Yingjie. Privacy-Preserving Data Publication for Clustering[J]. Journal of Computer Research and Development, 2012, 49(5): 1095-1104. |