Citation: | Sang Jitao, Yu Jian. ChatGPT: A Glimpse into AI’s Future[J]. Journal of Computer Research and Development, 2023, 60(6): 1191-1201. DOI: 10.7544/issn1000-1239.202330304 |
ChatGPT has been a significant breakthrough and drawn widespread attention. ChatGPT’s role in AI development and its future impact is examined in this paper. We first introduce ChatGPT’s exceptional dialogue generation capabilities, enabling it to handle nearly all natural language processing tasks and be applied as a data generator, knowledge mining tool, model dispatcher, and natural interaction interface. We then analyze ChatGPT’s limitations in factual errors, toxic content generation, safety, fairness, interpretability, and data privacy, and discuss the importance of clarifying its capability boundaries. After that, we analyze the concept of truth and explain why ChatGPT cannot distinguish truth from falsehood from the non-equivalence of three references. In discussing AI's future, we analyze mid-to-short term technological trends and the long-term development path from the relationship between perception, cognition, emotion, and behavioral intelligence. Lastly, we explore ChatGPT’s potential impact on cognitive cost, education, Turing Test understanding, academia’s opportunities and challenges, information cocoons, energy and environmental issues, and productivity enhancement.
[1] |
Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485−5551
|
[2] |
Zhou Y, Muresanu AI, Han Z, et al. Large language models are human-level prompt engineers[J]. arXiv preprint, arXiv: 2211.01910, 2022
|
[3] |
Wei J, Tay Y, Bommasani R, et al. Emergent abilities of large language models[J]. arXiv preprint, arXiv: 2206.07682, 2022
|
[4] |
Polanyi M, Sen A. The Tacit Dimension[M]. Chicago, IL: University of Chicago Press, 2009
|
[5] |
Wu Chenfei, Yin Shengming, Qi Weizhen, et al. Visual ChatGPT: Talking, drawing and editing with visual foundation models[J]. arXiv preprint, arXiv: 2303.04671, 2023
|
[6] |
Yang Zhengyuan, Li Linjie, Wang Jianfeng, et al. MM-REACT: Prompting ChatGPT for multimodal reasoning and action[J]. arXiv preprint, arXiv: 2303.11381, 2023
|
[7] |
Shen Yongliang, Song Kaitao, Tan Xu, et al. HuggingGPT: Solving AI tasks with ChatGPT and its friends in HuggingFace[J]. arXiv preprint, arXiv: 2303.17580, 2023
|
[8] |
Borji A. A categorical archive of chatgpt failures[J]. arXiv preprint, arXiv: 2302.03494, 2023
|
[9] |
Liu Yiran, Liu Xiao, Chen Haotian, et al. Does debiasing inevitably degrade the model performance[J]. arXiv preprint, arXiv: 2211.07350, 2022
|
[10] |
Zhuo TY, Huang Yujin, Chen Chunyang, et al. Exploring AI ethics of ChatGTP: A diagnostic analysis[J]. arXiv preprint, arXiv: 2301.12867, 2023
|
[11] |
Carlini N, Tramer F, Wallace E, et al. Extracting training data from large language models[C] //Proc of USENIX Security Symp. Berkeley, CA : USENIX Association, 2021: 2633−2650
|
[12] |
Luft J, Ingham H. The Johari window, a graphic model of interpersonal awareness[C] //Proc of the Western Training Laboratory in Group Development. Los Angeles: University of California, Los Angeles, 1955, 246
|
[13] |
Gao Luyu, Madaan A, Zhou Shuyan, et al. PAL: Program-aided language models[J]. arXiv preprint, arXiv: 2211.10435, 2022
|
[14] |
Yao Shunyu, Zhao J, Yu Dian, et al. ReAct: Synergizing reasoning and acting in language models [C] //Proc of the Int Conf on Learning Representations (ICLR). 2023[2023-04-10].https://arxiv.org/abs/2210.03629
|
[15] |
Shinn N, Labash B, Gopinath A. Reflexion: An autonomous agent with dynamic memory and self-reflection[J]. arXiv preprint, arXiv: 2303.11366, 2023
|
[16] |
Ross W D. Aristotle on His Predecessors, Being the First Book of His Metaphysics [M] S. l. : s. n. ,1908: 110−113
|
[17] |
Tarski A. The semantic conception of truth: And the foundations of semantics[J]. Philosophy and Phenomenological Research, 1944, 4(3): 341−76 doi: 10.2307/2102968
|
[18] |
于剑. 图灵测试的明与暗[J], 计算机研究与发展, 2020, 57(5): 906−911
Yu Jian. Brilliance and darkness: Turing test[J]. Journal of Computer Research and Development, 2020, 57(5): 906−911(in Chinese)
|
[19] |
罗素. 意义与真理的探究[M]. 贾可春译. 北京: 商务出版社, 2012
Russell B. An Inquiry into Meaning and Truth [M]. Beijing: China Commerce and Trade Press, 2012
|
[20] |
Xiao Guangxuan, Lin Ji, Han Song. Offsite-Tuning: Transfer Learning without Full Model[J]. arXiv preprint, arXiv: 2302.04870, 2023
|
[21] |
Held R, Hein A. Movement-produced stimulation in the development of visually guided behavior [J]. Journal of Comparative and Physiological Psychology. 1963, 56(5): 872
|
[22] |
Vemprala S, Bonatti R, Bucker A, et al. ChatGPT for robotics: Design principles and model abilities[EB/OL]. 2023[2023-03-01].http://microsoft.com/en-us/research/group/autonomous-systems-group-robotics/articles/chatgpt-for-robotics
|
[23] |
Bai Y, Kadavath S, Kundu S, et al. Constitutional AI: Harmlessness from AI feedback[J]. arXiv preprint, arXiv: 2212.08073, 2022
|
[1] | Chen Huimin, Liu Zhiyuan, Sun Maosong. The Social Opportunities and Challenges in the Era of Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(5): 1094-1103. DOI: 10.7544/issn1000-1239.202330700 |
[2] | Liu Yong, Xie Shengnan, Zhong Zhiwei, Li Jinbao, Ren Qianqian. Topic-Interest Based Influence Maximization Algorithm in Social Networks[J]. Journal of Computer Research and Development, 2018, 55(11): 2406-2418. DOI: 10.7544/issn1000-1239.2018.20170672 |
[3] | Jiao Xu, Xiao Yingyuan, Zheng Wenguang, Zhu Ke. Research Progress of Recommendation Technology in Location-Based Social Networks[J]. Journal of Computer Research and Development, 2018, 55(10): 2291-2306. DOI: 10.7544/issn1000-1239.2018.20170489 |
[4] | Deng Xiaoheng, Cao Dejuan, Pan Yan, Shen Hailan, Chen Zhigang. An Optimized Credit Distribution Model in Social Networks with Time-Delay Constraint[J]. Journal of Computer Research and Development, 2017, 54(2): 382-393. DOI: 10.7544/issn1000-1239.2017.20151118 |
[5] | Guo Caihua, Wang Bin, Zhu Huaijie, Yang Xiaochun. Incremental Dynamic Social Network Anonymity Technology[J]. Journal of Computer Research and Development, 2016, 53(6): 1352-1364. DOI: 10.7544/issn1000-1239.2016.20140695 |
[6] | Wang Dong, Li Zhenyu, Xie Gaogang. Unbiased Sampling Technologies on Online Social Network[J]. Journal of Computer Research and Development, 2016, 53(5): 949-967. DOI: 10.7544/issn1000-1239.2016.20148387 |
[7] | LiJin, YueKun, ZhangDehai, LiuWeiyi. Robust Influence Blocking Maximization in Social Networks[J]. Journal of Computer Research and Development, 2016, 53(3): 601-610. DOI: 10.7544/issn1000-1239.2016.20148341 |
[8] | Wu Linping, Wei Yong, Xu Xiaowei, Liu Xu. Impact of System Noise by Quantitative Analysis[J]. Journal of Computer Research and Development, 2015, 52(5): 1146-1152. DOI: 10.7544/issn1000-1239.2015.20131921 |
[9] | Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890 |
[10] | Liu Huaxiao, Jin Ying, and Ma Pengfei. An Approach to Requirements Change Impact Analysis[J]. Journal of Computer Research and Development, 2013, 50(8): 1769-1777. |