Citation: | Hou Tao, Ding Weiping, Huang Jiashuang, Ju Hengrong. DE-NNs: Brain Network Analysis Algorithm Based on Dynamic Evidence Neural Networks[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330883 |
Dynamic functional connections (dFCs) can be regarded as a process of dynamic changes in multiple time windows to explore the changes in functional connections of the brain in different time periods. It has been widely used in resting state functional magnetic resonance imaging (rs-fMRI) analysis, providing a new perspective and strategy for the diagnosis of brain diseases. However, the common dynamic brain network analysis methods can not effectively use the potential correlation and timing between dynamic data, and ignore the uncertainty factors caused by the inconsistent data quality of each window. Therefore, we propose a brain network analysis algorithm based on dynamic evidence neural networks (DE-NNs). This algorithm designs a multi-view evidence acquisition module of dynamic brain network, which treats each time window of dynamic brain network as a view. Three different convolution filters are used to extract the feature maps of each time window of the dynamic brain network, and the evidence of the dynamic level is fully obtained. A dynamic evidence fusion mechanism is designed to make full use of dynamic evidence. The dynamic trust function is constructed according to the time sequence of dFC data based on the evidence theory synthesis rules. The evidence generated by multiple windows is fused at the decision level of classification, the uncertainty information is fully considered, and the classification performance is significantly improved. Experiments are conducted on three schizophrenia datasets compared with existing advanced algorithms in order to verify the effectiveness of the proposed DE-NNs. The results show that the accuracy and F1 scores of DE-NNs on the three brain disease diagnosis tasks are significantly improved.
[1] |
Cui Hejie, Dai Wei, Zhu Yanqiao, et al. BrainGB: A benchmark for brain network analysis with graph neural networks[J]. IEEE Transactions on Medical Imaging, 2022, 42(2): 493−506
|
[2] |
Zhu Qi, Xu Ruting, Wang Ran, et al. Stacked topological preserving dynamic brain networks representation and classification[J]. IEEE Transactions on Medical Imaging, 2022, 41(11): 3473−3484 doi: 10.1109/TMI.2022.3186797
|
[3] |
接标,张道强. 面向脑网络的新型图核及其在MCI分类上的应用[J]. 计算机学报,2016,39(8):1667−1680
Jie Biao, Zhang Daoqiang. The novel graph kernel for brain networks with application to MCI classification[J]. Chinese Journal of Computers, 2016, 39(8): 1667−1680 (in Chinese)
|
[4] |
Sui Jing, Pearlson G, Caprihan A, et al. Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+ joint ICA model[J]. Neuroimage, 2011, 57(3): 839−855 doi: 10.1016/j.neuroimage.2011.05.055
|
[5] |
Olabi B, Ellison-Wright I, McIntosh A M, et al. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies[J]. Biological Psychiatry, 2011, 70(1): 88−96 doi: 10.1016/j.biopsych.2011.01.032
|
[6] |
Zhang Jie, Cheng Wei, Liu Zhaowen, et al. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders[J]. Brain, 2016, 139(8): 2307−2321 doi: 10.1093/brain/aww143
|
[7] |
Yin Weiyan, Li Tengfei, Hung S C, et al. The emergence of a functionally flexible brain during early infancy[J]. Proceedings of the National Academy of Sciences, 2020, 117(38): 23904−23913 doi: 10.1073/pnas.2002645117
|
[8] |
Guo Shuixia, Zhao Wei, Tao Haojuan, et al. The instability of functional connectivity in patients with schizophrenia and their siblings: A dynamic connectivity study[J]. Schizophrenia Research, 2018, 195: 183−189 doi: 10.1016/j.schres.2017.09.035
|
[9] |
Kawahara J, Brown C J, Miller S P, et al. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment[J]. NeuroImage, 2017, 146: 1038−1049 doi: 10.1016/j.neuroimage.2016.09.046
|
[10] |
Jie Biao, Liu Mingxia, Lian Chunfeng, et al. Designing weighted correlation kernels in convolutional neural networks for functional connectivity based brain disease diagnosis[J]. Medical Image Analysis, 2020, 63: 101709 doi: 10.1016/j.media.2020.101709
|
[11] |
Li Xiaoxiao, Yuan Zhou, Dvornek N, et al. BrainGNN: Interpretable brain graph neural network for fMRI analysis[J]. Medical Image Analysis, 2021, 74: 102233 doi: 10.1016/j.media.2021.102233
|
[12] |
Zhu Wenyong, Sun Liang, Huang Jiashuang, et al. Dual attention multi-instance deep learning for Alzheimer’s disease diagnosis with structural MRI[J]. IEEE Transactions on Medical Imaging, 2021, 40(9): 2354−2366 doi: 10.1109/TMI.2021.3077079
|
[13] |
Ji Junzhong, Chen Zhihui, Yang Cuicui. Convolutional neural network with sparse strategies to classify dynamic functional connectivity[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(3): 1219−1228
|
[14] |
Li Yang, Liu Jingyu, Tang Zhenyu, et al. Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification[J]. IEEE Transactions on Medical Imaging, 2020, 39(9): 2818−2830 doi: 10.1109/TMI.2020.2976825
|
[15] |
Hutchison R M, Womelsdorf T, Allen E A, et al. Dynamic functional connectivity: Promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360−378 doi: 10.1016/j.neuroimage.2013.05.079
|
[16] |
Gonzalez-Castillo J, Bandettini P A. Task-based dynamic functional connectivity: Recent findings and open questions[J]. Neuroimage, 2018, 180: 526−533 doi: 10.1016/j.neuroimage.2017.08.006
|
[17] |
He Tao, Hu Junjie, Song Ying, et al. Multi-task learning for the segmentation of organs at risk with label dependence[J]. Medical Image Analysis, 2020, 61: 101666 doi: 10.1016/j.media.2020.101666
|
[18] |
He Tao, Zhang Lei, Guo Jixiang, et al. Multilabel classification by exploiting data-driven pair-wise label dependence[J]. International Journal of Intelligent Systems, 2020, 35(9): 1375−1396 doi: 10.1002/int.22257
|
[19] |
Yager R R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93−137 doi: 10.1016/0020-0255(87)90007-7
|
[20] |
吴伟志,杨丽,谭安辉,等. 广义不完备多粒度标记决策系统的粒度选择[J]. 计算机研究与发展,2018,55(6):1263−1272 doi: 10.7544/issn1000-1239.2018.20170233
Wu Weizhi, Yang Li, Tan Anhui, et al. Granularity selections in generalized incomplete multi-granular labeled decision systems[J]. Journal of Computer Research and Development, 2018, 55(6): 1263−1272 (in Chinese) doi: 10.7544/issn1000-1239.2018.20170233
|
[21] |
孙怀江,杨静宇. 一种相关证据合成方法[J]. 计算机学报,1999,22(9):1004−1007 doi: 10.3321/j.issn:0254-4164.1999.09.019
Sun Huaijiang, Yang Jingyu. A combination method for dependent evidences[J]. Chinese Journal of Computers, 1999, 22(9): 1004−1007 (in Chinese) doi: 10.3321/j.issn:0254-4164.1999.09.019
|
[22] |
Fang Ran, Liao Huchang, Mardani A. How to aggregate uncertain and incomplete cognitive evaluation information in lung cancer treatment plan selection? A method based on Dempster-Shafer theory[J]. Information Sciences, 2022, 603: 222−243 doi: 10.1016/j.ins.2022.04.060
|
[23] |
罗浩,闫光辉,张萌,等. 融合多元信息的多关系社交网络节点重要性研究[J]. 计算机研究与发展,2020,57(5):954−970 doi: 10.7544/issn1000-1239.2020.20190331
Luo Hao, Yan Guanghui, Zhang Meng, et al. Research on node importance fused multi-information for multi-relational social networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954−970 (in Chinese) doi: 10.7544/issn1000-1239.2020.20190331
|
[24] |
Zhou S K, Greenspan H, Davatzikos C, et al. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises[J]. Proceedings of the IEEE, 2021, 109(5): 820−838 doi: 10.1109/JPROC.2021.3054390
|
[25] |
Lin Qiuhua, Niu Yanwei, Sui Jing, et al. SSPNet: An interpretable 3D-CNN for classification of schizophrenia using phase maps of resting-state complex-valued fMRI data[J]. Medical Image Analysis, 2022, 79: 102430 doi: 10.1016/j.media.2022.102430
|
[26] |
Yan Weizheng, Calhoun V, Song Ming, et al. Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site fMRI data[J]. EBioMedicine, 2019, 47: 543−552 doi: 10.1016/j.ebiom.2019.08.023
|
[27] |
Huang S G, Xia Jing, Xu Liyuan, et al. Spatio-temporal directed acyclic graph learning with attention mechanisms on brain functional time series and connectivity[J]. Medical Image Analysis, 2022, 77: 102370 doi: 10.1016/j.media.2022.102370
|
[28] |
洪敏,贾彩燕,李亚芳,等. 样本加权的多视图聚类算法[J]. 计算机研究与发展,2019,56(8):1677−1685 doi: 10.7544/issn1000-1239.2019.20190150
Hong Min, Jia Caiyan, Li Yafang, et al. Sample-weighted multi-view clustering[J]. Journal of Computer Research and Development, 2019, 56(8): 1677−1685 (in Chinese) doi: 10.7544/issn1000-1239.2019.20190150
|
[29] |
刘金花,王洋,钱宇华. 基于谱结构融合的多视图聚类[J]. 计算机研究与发展,2022,59(4):922−935 doi: 10.7544/issn1000-1239.20200875
Liu Jinhua, Wang Yang, Qian Yuhua. Multi-view clustering with spectral structure fusion[J]. Journal of Computer Research and Development, 2022, 59(4): 922−935 (in Chinese) doi: 10.7544/issn1000-1239.20200875
|
[30] |
Zhang Zheng, Liu Li, Shen Fumin, et al. Binary multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(7): 1774−1782
|
[31] |
Jia Xiaodong, Jing Xiaoyuan, Zhu Xiaoke, et al. Semi-supervised multi-view deep discriminant representation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(7): 2496−2509
|
[32] |
Zhao Jing, Xie Xijiong, Xu Xin, et al. Multi-view learning overview: Recent progress and new challenges[J]. Information Fusion, 2017, 38: 43−54 doi: 10.1016/j.inffus.2017.02.007
|
[33] |
He Tao, Mao Hua, Yi Zhang. Moving object recognition using multi-view three-dimensional convolutional neural networks[J]. Neural Computing and Applications, 2017, 28: 3827−3835 doi: 10.1007/s00521-016-2277-9
|
[34] |
梁新彦,钱宇华,郭倩,等. 多粒度融合驱动的超多视图分类方法[J]. 计算机研究与发展,2022,59(8):1653−1667 doi: 10.7544/issn1000-1239.20211112
Liang Xinyan, Qian Yuhua, Guo Qian, et al. Multi-granulation fusion-driven method for many-view classification[J]. Journal of Computer Research and Development, 2022, 59(8): 1653−1667 (in Chinese) doi: 10.7544/issn1000-1239.20211112
|
[35] |
Zhou Yuan, Yue Xiaodong, Chen Yufei, et al. Convolutional redistribution network for multi-view medical image diagnosis[C]//Proc of the 11th Workshop on Clinical Image-Based Procedures. Berlin: Springer, 2023: 54−61
|
[36] |
Ding Yuhang, Yu Xin, Yang Yi. RFNet: Region-aware fusion network for incomplete multi-modal brain tumor segmentation[C]//Proc of the 34th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 3975−3984
|
[37] |
Mao Shitong, Sejdić E. A review of recurrent neural network-based methods in computational physiology[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 6983−7003 doi: 10.1109/TNNLS.2022.3145365
|
[38] |
He Tao, Mao Hua, Yi Zhang. Subtraction gates: Another way to learn long-term dependencies in recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(4): 1740−1751
|
[39] |
Han Zongbo, Yang Fan, Huang Junzhou, et al. Multimodal dynamics: Dynamical fusion for trustworthy multimodal classification[C]//Proc of the 35th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 20707−20717
|
[40] |
Liang Xinyan, Qian Yuhua, Guo Qian, et al. AF: An association-based fusion method for multi-modal classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 9236−9254
|
[41] |
Dempster A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(4): 325−339
|
[42] |
Dempster A P. A generalization of Bayesian inference[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1968, 30(2): 205−232 doi: 10.1111/j.2517-6161.1968.tb00722.x
|
[43] |
Sankararaman S, Mahadevan S. Model validation under epistemic uncertainty[J]. Reliability Engineering & System Safety, 2011, 96(9): 1232−1241
|
[44] |
Jøsang A, Hankin R. Interpretation and fusion of hyper opinions in subjective logic[C]//Proc of the 15th Int Conf on Information Fusion. Piscataway, NJ: IEEE, 2012: 1225−1232
|
[45] |
Han Zongbo, Zhang Changqing, Fu Huazhu, et al. Trusted multi-view classification with dynamic evidential fusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 2551−2566
|
[46] |
Xu Shaoxun, Chen Yufei, Ma Chao, et al. Deep evidential fusion network for medical image classification[J]. International Journal of Approximate Reasoning, 2022, 150: 188−198 doi: 10.1016/j.ijar.2022.08.013
|
[47] |
Liu Wei, Yue Xiaodong, Chen Yufei, et al. Trusted multi-view deep learning with opinion aggregation[C]//Proc of the 36th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2022: 7585−7593
|
[48] |
Xu Cai, Zhao Wei, Zhao Jinglong, et al. Uncertainty-aware multiview deep learning for Internet of things applications[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2): 1456−1466
|
[49] |
Wong T T. Generalized Dirichlet distribution in Bayesian analysis[J]. Applied Mathematics and Computation, 1998, 97(2/3): 165−181
|
[50] |
Lee S H, Yang Dan. Neuromodulation of brain states[J]. Neuron, 2021, 76(1): 209−222
|
[51] |
Yan Chaogan, Zang Yufeng. DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI[J]. Frontiers in Systems Neuroscience, 2010, 4: 1377
|
[52] |
Leonardi N, Van De Ville D. On spurious and real fluctuations of dynamic functional connectivity during rest[J]. Neuroimage, 2015, 104: 430−436 doi: 10.1016/j.neuroimage.2014.09.007
|
[53] |
Wang Mingliang, Huang Jiashuang, Liu Mingxia, et al. Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI[J]. Medical Image Analysis, 2021, 71: 102063 doi: 10.1016/j.media.2021.102063
|
[54] |
Fix E, Hodges J L. Discriminatory analysis: Nonparametric discrimination: Consistency properties[J]. International Statistical Review/Revue Internationale de Statistique, 1989, 57(3): 238−247
|
[55] |
Su Hang, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proc of the 15th IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2015: 945–953
|
[56] |
Feng Yifan, Zhang Zizhao, Zhao Xibin, et al. GVCNN: Group-view convolutional neural networks for 3D shape recognition[C]//Proc of the 31st IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 264–272
|
[57] |
Wang Tongxin, Shao Wei, Huang Zhi, et al. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification[J]. Nature Communications, 2021, 12(1): 3445 doi: 10.1038/s41467-021-23774-w
|
[58] |
Han Zongbo, Zhang Changqing, Fu Huazhu, et al. Trusted multi-view classification[J]. arXiv preprint, arXiv: 2102.02051, 2021
|
[59] |
Byne W, Hazlett E A, Buchsbaum M S, et al. The thalamus and schizophrenia: Current status of research[J]. Acta Neuropathologica, 2009, 117: 347−368 doi: 10.1007/s00401-008-0404-0
|
[60] |
Andreasen N C, Arndt S, Swayze V, et al. Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging[J]. Science, 1994, 266(5183): 294−298
|
[61] |
Perlstein W M, Carter C S, Noll D C, et al. Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia[J]. American Journal of Psychiatry, 2001, 158(7): 1105−1113 doi: 10.1176/appi.ajp.158.7.1105
|
[62] |
Tan Haoyang, Sust S, Buckholtz J W, et al. Dysfunctional prefrontal regional specialization and compensation in schizophrenia[J]. American Journal of Psychiatry, 2006, 163(11): 1969−1977 doi: 10.1176/ajp.2006.163.11.1969
|
[1] | Peng Yingtao, Meng Xiaofeng, Du Zhijuan. Survey on Diversified Recommendation[J]. Journal of Computer Research and Development, 2025, 62(2): 285-313. DOI: 10.7544/issn1000-1239.202330600 |
[2] | MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation“CCIR 2024推荐”[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440770 |
[3] | Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643 |
[4] | Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195 |
[5] | Gu Liang, Yang Peng, Dong Yongqiang. A Diversified Recommendation Method for UCL in Broadcast-Storage Network[J]. Journal of Computer Research and Development, 2017, 54(8): 1631-1643. DOI: 10.7544/issn1000-1239.2017.20170128 |
[6] | Meng Xiangfu, Bi Chongchun, Zhang Xiaoyan, Tang Xiaoliang, Tang Yanhuan. Web Database top-k Diverse Keyword Query Suggestion Approach[J]. Journal of Computer Research and Development, 2017, 54(7): 1577-1591. DOI: 10.7544/issn1000-1239.2017.20160005 |
[7] | Yu Wenzhe, Sha Chaofeng, He Xiaofeng, Zhang Rong. Review Selection Considering Opinion Diversity[J]. Journal of Computer Research and Development, 2015, 52(5): 1050-1060. DOI: 10.7544/issn1000-1239.2015.20131932 |
[8] | Wang Xianghai, Cong Zhihuan, Fang Lingling, Song Chuanming. HMM Training Model Using Blending Population Diversity Based Aaptive Genetic Algorithm Title[J]. Journal of Computer Research and Development, 2014, 51(8): 1833-1844. DOI: 10.7544/issn1000-1239.2014.20121211 |
[9] | Zhang Weiguo, Yin Xia, and Wu Jianping. A Computation Method of Path Diversity Based on AS Relationships[J]. Journal of Computer Research and Development, 2012, 49(1): 167-173. |
[10] | Han Jianmin, Yu Juan, Yu Huiqun, Jia Jiong. A Multi-Level l-Diversity Model for Numerical Sensitive Attributes[J]. Journal of Computer Research and Development, 2011, 48(1): 147-158. |
1. |
罗宇哲,李玲,侯朋朋,于佳耕,程丽敏,张常有,武延军,赵琛. 面向AIoT的协同智能综述. 计算机研究与发展. 2025(01): 179-206 .
![]() | |
2. |
王蕴,林霄,楼芝兰,李军,孙卫强. 面向边缘光算力网络的上行链路资源协同调度算法. 光通信技术. 2024(03): 45-51 .
![]() | |
3. |
王铭源,王正国,李济顺,薛玉君. 层级式机械装备健康指数模型及管理系统构建. 金属矿山. 2024(09): 198-206 .
![]() | |
4. |
王睿,王岩,尹朴,齐建鹏,孙叶桃,李倩,张易达,张梅奎. 面向边缘智能的协同训练研究进展. 工程科学学报. 2023(08): 1400-1416 .
![]() | |
5. |
薛建强,史彦军,李波. 面向无人集群的边缘计算技术综述. 兵工学报. 2023(09): 2546-2555 .
![]() | |
6. |
阴彦磊,王立华,廖伟智,张万达. 融合GRU-Attention与鲸鱼算法的流程制造工艺参数云边联动优化. 计算机集成制造系统. 2023(09): 2991-3005 .
![]() | |
7. |
许浩,朱晓娟. SDN中基于模型划分的云边协同推理算法. 兰州工业学院学报. 2023(06): 31-37 .
![]() |