Citation: | Yu Ruiqi, Zhang Xinyun, Ren Shuang. A Review of Quantum Machine Learning Algorithms Based on Variational Quantum Circuit[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330979 |
As the scale of available data increases, the importance and impact of machine learning grows. It has been found that quantum computing can be realized with the help of the principles of quantum mechanics, and the quantum machine learning algorithm formed by combining quantum computing and machine learning can theoretically produce exponential acceleration advantages over classical machine learning algorithms. Quantum versions of many classical algorithms have been proposed and they may solve problems that are difficult to classical computers. At present, limited by the quantum computing hardware, the number of controllable qubits, noise, and other factors restrict the development of quantum computers. Quantum computing hardware is unlikely to reach the level needed for universal quantum computers in the short term, and current research focuses on the algorithms that can run on noisy intermediate-scale quantum (NISQ) computers. Variational quantum algorithms (VQAs) are hybrid quantum classical algorithms which are suitable for current quantum computing devices. Related research is one of the research hotspots in the field of quantum machine learning. Variational quantum circuits (VQCs) are parameterized quantum circuits (PQCs) used in variational quantum algorithms to solve quantum machine learning tasks. It is also be called Ansatz and quantum neural networks (QNNs). The framework of variational quantum algorithm mainly contains five steps: 1) Designing the loss function according to the task. Designing parameterized quantum circuits as model and initializing parameters. 2) Embedding classical data. The classical data is pre-processed and encoded to the quantum state. If quantum data is used as input, it only needs to be pre-processed without encoding. 3) Calculating the loss function through parameterized quantum circuit. This step is where quantum advantage comes in. 4) Measuring and post-processing. Through quantum measurement operation, the quantum superposition state wave packet collapses into classical state. The classical data can be obtained after post-processing. 5) Optimizing the parameters. Updating parameters and optimizing the model with classical optimization algorithms and then returning to step 3 until the loss function converges after several iterations. We can obtain a set of optimal parameters. The final result is the output of the optimal model. This paper reviews the basic theory of quantum computing and the basic framework of variational quantum algorithm, and further introduces the application and progress of variational quantum algorithm in the field of quantum machine learning, then reviews supervised quantum machine learning including quantum classifiers, unsupervised quantum machine learning including quantum circuit born machine, variational quantum Boltzmann machine and quantum autoencoder, semi-supervised quantum learning including quantum generative adversarial network, quantum reinforcement learning, and quantum circuit architecture search in detail. Next, this paper compares the models and analyses their advantages and disadvantages, and briefly discusses and summarizes the related datasets and simulation platforms that can reproduce the introduced models. Finally, this paper puts forward the challenges and future research trends of quantum machine learning algorithms based on variational quantum circuit.
[1] |
Hilbert M, López P. The world’s technological capacity to store, communicate, and compute information[J]. Science, 2011, 332(6025): 60−65 doi: 10.1126/science.1200970
|
[2] |
Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505−510 doi: 10.1038/s41586-019-1666-5
|
[3] |
Huang Cupjin, Zhang Fang, Newman M, et al. Classical simulation of quantum supremacy circuits[J]. arXiv preprint, arXiv: 2005.06787, 2020
|
[4] |
Pan Feng, Zhang Pan. Simulating the Sycamore quantum supremacy circuits[J]. arXiv preprint, arXiv: 2103.03074, 2021
|
[5] |
Zhu Qingling, Cao Sirui, Chen Fusheng, et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling[J]. Science Bulletin, 2022, 67(3): 240−245 doi: 10.1016/j.scib.2021.10.017
|
[6] |
Feng Congcong, Zhao Bo, Zhou Xin, et al. An enhanced quantum k-nearest neighbor classification algorithm based on polar distance[J]. Entropy, 2023, 25(1): 127 doi: 10.3390/e25010127
|
[7] |
Li Jing, Gao Fei, Lin Song, et al. Quantum k-fold cross-validation for nearest neighbor classification algorithm[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 611: 128435 doi: 10.1016/j.physa.2022.128435
|
[8] |
Cerezo M, Sharma K, Arrasmith A, et al. Variational quantum state eigensolver[J]. NPJ Quantum Information, 2022, 8(1): 113 doi: 10.1038/s41534-022-00611-6
|
[9] |
Zhou Zeqiao, Du Yuxuan, Tian Xinmei, et al. Qaoa-in-qaoa: Solving large-scale maxcut problems on small quantum machines[J]. Physical Review Applied, 2023, 19(2): 024027 doi: 10.1103/PhysRevApplied.19.024027
|
[10] |
Huang Rui, Tan Xiaoqing, Xu Qingshan. Variational quantum tensor networks classifiers[J]. Neurocomputing, 2021, 452: 89−98 doi: 10.1016/j.neucom.2021.04.074
|
[11] |
Cong I, Choi S, Lukin M D. Quantum convolutional neural networks[J]. Nature Physics, 2019, 15(12): 1273−1278 doi: 10.1038/s41567-019-0648-8
|
[12] |
Wang Hanrui, Ding Yongshan, Gu Jiaqi, et al. QuantumNAS: Noise-adaptive search for robust quantum circuits[C]//Proc of the 28th Annual Int Symp on High-Performance Computer Architecture. Piscataway, NJ: IEEE, 2022: 692−708
|
[13] |
Benedetti M, Garcia-Pintos D, Perdomo O, et al. A generative modeling approach for benchmarking and training shallow quantum circuits[J]. NPJ Quantum Information, 2019, 5(1): 45 doi: 10.1038/s41534-019-0157-8
|
[14] |
Zoufal C, Lucchi A, Woerner S. Variational quantum Boltzmann machines[J]. Quantum Machine Intelligence, 2021, 3(1): 7 doi: 10.1007/s42484-020-00033-7
|
[15] |
Wu S R, Li C T, Cheng H C. Efficient data loading with quantum autoencoder[C/OL]//Proc of the 48th Int Conf on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE, 2023[2023-09-14]. https://ieeexplore.ieee.org /abstract/document/10096496
|
[16] |
Chen Guoming, Chen Qiang, Long Shun, et al. Quantum convolutional neural network for image classification[J]. Pattern Analysis and Applications, 2023, 26(2): 655−667 doi: 10.1007/s10044-022-01113-z
|
[17] |
Akshay V, Philathong H, Morales M E, et al. Reachability deficits in quantum approximate optimization[J]. Physical Review Letters, 2020, 124(9): 090504 doi: 10.1103/PhysRevLett.124.090504
|
[18] |
Anand A, Alperin-Lea S, Choquette A, et al. Exploring the role of parameters in variational quantum algorithms[J]. arXiv preprint, arXiv: 2209.14405, 2022
|
[19] |
Zhou Nanrun, Zhang Tianfeng, Xie Xinwen, et al. Hybrid quantum classical generative adversarial networks for image generation via learning discrete distribution[J]. Signal Processing: Image Communication, 2023, 110: 116891 doi: 10.1016/j.image.2022.116891
|
[20] |
Romero J, Babbush R, Mcclean J R, et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz[J]. Quantum Science and Technology, 2018, 4(1): 014008 doi: 10.1088/2058-9565/aad3e4
|
[21] |
Bang J, Lim J, Kim M S, et al. Quantum learning machine[J]. arXiv preprint, arXiv: 0803.2976, 2008
|
[22] |
Cerezo M, Arrasmith A, Babbush R, et al. Variational quantum algorithms[J]. Nature Reviews Physics, 2021, 3(9): 625−644 doi: 10.1038/s42254-021-00348-9
|
[23] |
Schuld M, Killoran N. Quantum machine learning in feature Hilbert spaces[J]. Physical Review Letters, 2019, 122(4): 040504 doi: 10.1103/PhysRevLett.122.040504
|
[24] |
Lloyd S, Schuld M, Ijaz A, et al. Quantum embeddings for machine learning[J]. arXiv preprint, arXiv: 2001.03622, 2020
|
[25] |
Schuld M. Supervised quantum machine learning models are kernel methods[J]. arXiv preprint, arXiv: 2101.11020, 2021
|
[26] |
Grover L, Rudolph T. Creating superpositions that correspond to efficiently integrable probability distributions[J]. arXiv preprint, quant-ph/0208112, 2002
|
[27] |
Kitaev A, Webb W A. Wavefunction preparation and resampling using a quantum computer[J]. arXiv preprint, arXiv: 0801.0342, 2008
|
[28] |
Lloyd S. Universal quantum simulators[J]. Science, 1996, 273(5278): 1073−1078 doi: 10.1126/science.273.5278.1073
|
[29] |
Kandala A, Mezzacapo A, Temme K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242−246 doi: 10.1038/nature23879
|
[30] |
Chen S Y C, Huang C M, Hsing C W, et al. Hybrid quantum-classical classifier based on tensor network and variational quantum circuit[J]. arXiv preprint, arXiv: 2011.14651, 2020
|
[31] |
Gong Lihua, Xing Lingzhi, Liu Sihang, et al. Born machine model based on matrix product state quantum circuit[J]. Physica A: Statistical Mechanics and its Applications, 2022, 593: 126907 doi: 10.1016/j.physa.2022.126907
|
[32] |
Grant E, Benedetti M, Cao Shuxiang, et al. Hierarchical quantum classifiers[J]. NPJ Quantum Information, 2018, 4(1): 65 doi: 10.1038/s41534-018-0116-9
|
[33] |
Qi Jun, Yang Chaohan, Chen Pinyu. QTN-VQC: An end-to-end learning framework for quantum neural networks[J]. Physica Scripta, 2023, 99(1): 015111
|
[34] |
Li Guangxi, Song Zhixin, Wang Xin. VSQL: Variational shadow quantum learning for classification[C]//Proc of the 35th AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2021: 8357−8365
|
[35] |
Grimsley H R, Economou S E, Barnes E, et al. An adaptive variational algorithm for exact molecular simulations on a quantum computer[J]. Nature Communications, 2019, 10(1): 3007 doi: 10.1038/s41467-019-10988-2
|
[36] |
Bittel L, Kliesch M. Training variational quantum algorithms is NP-hard[J]. Physical Review Letters, 2021, 127(12): 120502 doi: 10.1103/PhysRevLett.127.120502
|
[37] |
Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint, arXiv: 1412.6980, 2014
|
[38] |
Liu Junhua, Lim K H, Wood K L, et al. Hybrid quantum-classical convolutional neural networks[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 290311
|
[39] |
Hur T, Kim L, Park D K. Quantum convolutional neural network for classical data classification[J]. Quantum Machine Intelligence, 2022, 4(1): 3 doi: 10.1007/s42484-021-00061-x
|
[40] |
Liu Jinguo, Wang Lei. Differentiable learning of quantum circuit born machines[J]. Physical Review A, 2018, 98(6): 062324 doi: 10.1103/PhysRevA.98.062324
|
[41] |
Coyle B, Henderson M, Le J C J, et al. Quantum versus classical generative modelling in finance[J]. Quantum Science and Technology, 2021, 6(2): 024013 doi: 10.1088/2058-9565/abd3db
|
[42] |
Leyton-Ortega V, Perdomo-Ortiz A, Perdomo O. Robust implementation of generative modeling with parametrized quantum circuits[J]. Quantum Machine Intelligence, 2021, 3(1): 17 doi: 10.1007/s42484-021-00040-2
|
[43] |
Li Junde, Ghosh S. Scalable variational quantum circuits for autoencoder-based drug discovery[C]//Proc of the 25th Design, Automation and Test in Europe Conf and Exhibition. Piscataway, NJ: IEEE, 2022: 340−345
|
[44] |
Zeng Jinfeng, Wu Yufeng, Liu Jinguo, et al. Learning and inference on generative adversarial quantum circuits[J]. Physical Review A, 2019, 99(5): 052306 doi: 10.1103/PhysRevA.99.052306
|
[45] |
Situ Haozhen, He Zhimin, Wang Yuyi et al. Quantum generative adversarial network for generating discrete distribution[J]. Information Sciences, 2020, 538: 193−208 doi: 10.1016/j.ins.2020.05.127
|
[46] |
Romero J, Aspuru-Guzik A. Variational quantum generators: Generative adversarial quantum machine learning for continuous distributions[J]. Advanced Quantum Technologies, 2021, 4(1): 2000003 doi: 10.1002/qute.202000003
|
[47] |
Li Junde, Topaloglu R O, Ghosh S. Quantum generative models for small molecule drug discovery[J]. IEEE Transactions on Quantum Engineering, 2021, 2: 3103308
|
[48] |
Herr D, Obert B, Rosenkranz M. Anomaly detection with variational quantum generative adversarial networks[J]. Quantum Science and Technology, 2021, 6(4): 045004 doi: 10.1088/2058-9565/ac0d4d
|
[49] |
Tsang S L, West M T, Erfani S M, et al. Hybrid quantum-classical generative adversarial network for high resolution image generation[J]. IEEE Transactions on Quantum Engineering, 2023, 4: 3102419
|
[50] |
Zoufal C, Lucchi A, Woerner S. Quantum generative adversarial networks for learning and loading random distributions[J]. NPJ Quantum Information, 2019, 5(1): 103 doi: 10.1038/s41534-019-0223-2
|
[51] |
Lockwood O, Si Mei. Reinforcement learning with quantum variational circuit[C]//Proc of the 16th AAAI Conf on Artificial Intelligence and Interactive Digital Entertainment. Menlo Park, CA: AAAI, 2020: 245−251
|
[52] |
Kwak Y, Yun W J, Jung S, et al. Introduction to quantum reinforcement learning: Theory and pennylane-based implementation[C]//Proc of the 12th Int Conf on Information and Communication Technology Convergence. Piscataway, NJ: IEEE, 2021: 416−420
|
[53] |
Yun W J, Kwak Y, Kim J P, et al. Quantum multiagent reinforcement learning via variational quantum circuit design[C]//Proc of the 42nd Int Conf on Distributed Computing Systems. Piscataway, NJ: IEEE, 2022: 1332−1335
|
[54] |
Yun W J, Kim J P, Jung S, et al. Quantum multi-agent actor-critic neural networks for internet-connected multirobot coordination in smart factory management[J]. IEEE Internet of Things Journal, 2023, 10(11): 9942−9952 doi: 10.1109/JIOT.2023.3234911
|
[55] |
Zhang Shixin, Hsieh Changyu, Zhang Shengyu, et al. Neural predictor based quantum architecture search[J]. Machine Learning: Science and Technology, 2021, 2(4): 045027 doi: 10.1088/2632-2153/ac28dd
|
[56] |
Lu Zhide, Shen Peixin, Deng Dongling. Markovian quantum neuroevolution for machine learning[J]. Physical Review Applied, 2021, 16(4): 044039 doi: 10.1103/PhysRevApplied.16.044039
|
[57] |
Robbins H, Monro S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400−407 doi: 10.1214/aoms/1177729586
|
[58] |
Arthur D. A hybrid quantum-classical neural network architecture for binary classification[J]. arXiv preprint, arXiv: 2201.01820, 2022
|
[59] |
Huang Heliang, Du Yuxuan, Gong Ming, et al. Experimental quantum generative adversarial networks for image generation[J]. Physical Review Applied, 2021, 16(2): 024051 doi: 10.1103/PhysRevApplied.16.024051
|
[60] |
Heimann D, Hohenfeld H, Wiebe F, et al. Quantum deep reinforcement learning for robot navigation tasks[J]. arXiv preprint, arXiv: 2202.12180, 2022
|
[61] |
Reddi S J, Kale S, Kumar S. On the convergence of adam and beyond[J]. arXiv preprint, arXiv: 1904.09237, 2019
|
[62] |
Agliardi G, Prati E. Optimal tuning of quantum generative adversarial networks for multivariate distribution loading[J]. Quantum Reports, 2022, 4(1): 75−105 doi: 10.3390/quantum4010006
|
[63] |
Nocedal J, Wright S J. Numerical Optimization[M]. New York: Springer, 2006
|
[64] |
Zhu Ciyou, Byrd R H, Lu Peihuang, et al. Algorithm 778: LBFGS-B: Fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on mathematical software, 1997, 23(4): 550−560 doi: 10.1145/279232.279236
|
[65] |
Romero J, Olson J P, Aspuru-Guzik A. Quantum autoencoders for efficient compression of quantum data[J]. Quantum Science and Technology, 2017, 2(4): 045001 doi: 10.1088/2058-9565/aa8072
|
[66] |
Bravo-Prieto C. Quantum autoencoders with enhanced data encoding[J]. Machine Learning: Science and Technology, 2021, 2(3): 035028 doi: 10.1088/2632-2153/ac0616
|
[67] |
Sutskever I, Martens J, Dahl G, et al. On the importance of initialization and momentum in deep learning[C]//Proc of the 30th Int Conf on Machine Learning. New York: PMLR, 2013: 1139−1147
|
[68] |
Tieleman T. Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude[J]. COURSERA: Neural Networks for Machine Learning, 2012, 4(2): 26−31
|
[69] |
Chen S Y C, Yang C H H, Qi Jun, et al. Variational quantum circuits for deep reinforcement learning[J]. IEEE Access, 2020, 8: 141007−141024 doi: 10.1109/ACCESS.2020.3010470
|
[70] |
Oh S, Choi J, Kim J. A tutorial on quantum convolutional neural networks (QCNN)[C]//Proc of the 11th Int Conf on Information and Communication Technology Convergence (ICTC). Piscataway, NJ: IEEE, 2020: 236−239
|
[71] |
Wei Shijie, Chen Yanhu, Zhou Zengrong, et al. A quantum convolutional neural network on NISQ devices[J]. AAPPS Bulletin, 2022, 32(1): 2 doi: 10.1007/s43673-021-00030-3
|
[72] |
Shingu Y, Seki Y, Watabe S, et al. Boltzmann machine learning with a variational quantum algorithm[J]. Physical Review A, 2021, 104(3): 032413 doi: 10.1103/PhysRevA.104.032413
|
[73] |
Chakrabarti S, Huang Yiming, Li Tongyang, et al. Quantum wasserstein generative adversarial networks[C]//Proc of the 33rd Conf on Neural Information Processing Systems (NeurIPS). La Jolla, CA: NIPS, 2019: 6781−6792
|
[74] |
Lloyd S, Weedbrook C. Quantum generative adversarial learning[J]. Physical Review Letters, 2018, 121(4): 040502 doi: 10.1103/PhysRevLett.121.040502
|
[75] |
Kennedy J, Eberhart R. Particle swarm optimization[C]//Proc of ICNN’95. Piscataway, NJ: IEEE, 1995: 1942−1948
|
[76] |
Zhu Daiwei, Linke N M, Benedetti M, et al. Training of quantum circuits on a hybrid quantum computer[J]. Science Advances, 2019, 5(10): eaaw9918 doi: 10.1126/sciadv.aaw9918
|
[77] |
Spall J C. A one-measurement form of simultaneous perturbation stochastic approximation[J]. Automatica, 1997, 33(1): 109−112 doi: 10.1016/S0005-1098(96)00149-5
|
[78] |
Patel Y J, Kundu A, Ostaszewski M, et al. Curriculum reinforcement learning for quantum architecture search under hardware errors[J]. arXiv preprint, arXiv: 2402.03500, 2024.
|
[79] |
Hansen N, Müller S D, Koumoutsakos P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionary Computation, 2003, 11(1): 1−18 doi: 10.1162/106365603321828970
|
[80] |
Alcazar J, Leyton-Ortega V, Perdomo-Ortiz A. Classical versus quantum models in machine learning: Insights from a finance application[J]. Machine Learning: Science and Technology, 2020, 1(3): 035003 doi: 10.1088/2632-2153/ab9009
|
[81] |
Las Heras U, Alvarez-Rodriguez U, Solano E, et al. Genetic algorithms for digital quantum simulations[J]. Physical Review Letters, 2016, 116(23): 230504 doi: 10.1103/PhysRevLett.116.230504
|
[82] |
Kondratyev A. Non-differentiable leaning of quantum circuit Born machine with genetic algorithm[J]. Wilmott, 2021, 2021(114): 50−61
|
[83] |
Ding Yongcheng, Lamata L, Sanz M, et al. Experimental implementation of a quantum autoencoder via quantum adders[J]. Advanced Quantum Technologies, 2019, 2(7/8): 1800065
|
[84] |
Mitarai K, Negoro M, Kitagawa M, et al. Quantum circuit learning[J]. Physical Review A, 2018, 98(3): 032309 doi: 10.1103/PhysRevA.98.032309
|
[85] |
He Guangping. Computing the gradients with respect to all parameters of a quantum neural network using a single circuit[J]. arXiv preprint, arXiv: 2307.08167, 2023
|
[86] |
Li Jun, Yang Xiaodong, Peng Xinhua, et al. Hybrid quantum-classical approach to quantum optimal control[J]. Physical Review Letters, 2017, 118(15): 150503 doi: 10.1103/PhysRevLett.118.150503
|
[87] |
Nakanishi K M, Fujii K, Todo S. Sequential minimal optimization for quantum-classical hybrid algorithms[J]. Physical Review Research, 2020, 2(4): 043158 doi: 10.1103/PhysRevResearch.2.043158
|
[88] |
Parrish R M, Iosue J T, Ozaeta A, et al. A Jacobi diagonalization and Anderson acceleration algorithm for variational quantum algorithm parameter optimization[J]. arXiv preprint, arXiv: 1904.03206, 2019
|
[89] |
Ostaszewski M, Grant E, Benedetti M. Structure optimization for parameterized quantum circuits[J]. Quantum, 2021, 5: 391 doi: 10.22331/q-2021-01-28-391
|
[90] |
Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303−332 doi: 10.1137/S0036144598347011
|
[91] |
Huang H Y, Broughton M, Mohseni M, et al. Power of data in quantum machine learning[J]. Nature Communications, 2021, 12(1): 2631 doi: 10.1038/s41467-021-22539-9
|
[92] |
Caro M C, Huang H Y, Cerezo M, et al. Generalization in quantum machine learning from few training data[J]. Nature Communications, 2022, 13(1): 4919 doi: 10.1038/s41467-022-32550-3
|
[93] |
Chia N H, Gilyén A P, Li T, et al. Samplingbased sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning[J]. Journal of the ACM, 2022, 69(5): 33
|
[94] |
Huang H Y, Kueng R, Torlai G, et al. Provably efficient machine learning for quantum many-body problems[J]. Science, 2022, 377(6613): eabk3333 doi: 10.1126/science.abk3333
|
[95] |
Huang H Y, Broughton M, Cotler J, et al. Quantum advantage in learning from experiments[J]. Science, 2022, 376(6598): 1182−1186 doi: 10.1126/science.abn7293
|
[96] |
Aharonov D, Cotler J, Qi X L. Quantum algorithmic measurement[J]. Nature Communications, 2022, 13(1): 887 doi: 10.1038/s41467-021-27922-0
|
[97] |
Bravyi S, Gosset D, König R. Quantum advantage with shallow circuits[J]. Science, 2018, 362(6412): 308−311 doi: 10.1126/science.aar3106
|
[98] |
Farhi E, Neven H. Classification with quantum neural networks on near term processors[J]. arXiv preprint, arXiv: 1802.06002, 2018
|
[99] |
Chefles A. Quantum state discrimination[J]. Contemporary Physics, 2000, 41(6): 401−424 doi: 10.1080/00107510010002599
|
[100] |
Barnett S M, Croke S. Quantum state discrimination[J]. Advances in Optics and Photonics, 2009, 1(2): 238−278 doi: 10.1364/AOP.1.000238
|
[101] |
Čepaitė I, Coyle B, Kashefi E. A continuous variable Born machine[J]. Quantum Machine Intelligence, 2022, 4(1): 6 doi: 10.1007/s42484-022-00063-3
|
[102] |
Coyle B, Mills D, Danos V, et al. The Born supremacy: Quantum advantage and training of an ising Born machine[J]. NPJ Quantum Information, 2020, 6(1): 60 doi: 10.1038/s41534-020-00288-9
|
[103] |
Rudolph M S, Toussaint N B, Katabarwa A, et al. Generation of high-resolution handwritten digits with an iontrap quantum computer[J]. Physical Review X, 2022, 12(3): 031010 doi: 10.1103/PhysRevX.12.031010
|
[104] |
Kao P Y, Yang Y C, Chiang W Y, et al. Exploring the advantages of quantum generative adversarial networks in generative chemistry[J]. Journal of Chemical Information and Modeling, 2023, 63(11): 3307−3318 doi: 10.1021/acs.jcim.3c00562
|
[105] |
Skolik A, Jerbi S, Dunjko V. Quantum agents in the gym: A variational quantum algorithm for deep Q-learning[J]. Quantum, 2022, 6: 720 doi: 10.22331/q-2022-05-24-720
|
[106] |
Skolik A, Mangini S, Bäck T, et al. Robustness of quantum reinforcement learning under hardware errors[J]. EPJ Quantum Technology, 2023, 10(1): 8 doi: 10.1140/epjqt/s40507-023-00166-1
|
[107] |
Niu M Y, Zlokapa A, Broughton M, et al. Entangling quantum generative adversarial networks[J]. Physical Review Letters, 2022, 128(22): 220505 doi: 10.1103/PhysRevLett.128.220505
|
[108] |
Du Yuxuan, Huang Tao, You Shan, et al. Quantum circuit architecture search for variational quantum algorithms[J]. NPJ Quantum Information, 2022, 8(1): 62 doi: 10.1038/s41534-022-00570-y
|
[109] |
Schuld M, Bocharov A, Svore K M, et al. Circuit-centric quantum classifiers[J]. Physical Review A, 2020, 101(3): 032308 doi: 10.1103/PhysRevA.101.032308
|
[110] |
Henderson M, Shakya S, Pradhan S, et al. Quanvolutional neural networks: Powering image recognition with quantum circuits[J]. Quantum Machine Intelligence, 2020, 2(1): 2 doi: 10.1007/s42484-020-00012-y
|
[111] |
Chu Cheng, Chia N H, Jiang Lei, et al. QMLP: An error-tolerant nonlinear quantum mlp architecture using parameterized two-qubit gates[C/OL]//Proc of the 29th Int Symp on Low Power Electronics and Design. New York: ACM, 2022[2023-11-16]. https://dl.acm.org/doi/abs/10.1145/35 31437.3539719
|
[112] |
Chen S Y C, Huang C M, Hsing C W, et al. An end-to-end trainable hybrid classical-quantum classifier[J]. Machine Learning: Science and Technology, 2021, 2(4): 045021 doi: 10.1088/2632-2153/ac104d
|
[113] |
Pesah A, Cerezo M, Wang S, et al. Absence of barren plateaus in quantum convolutional neural networks[J]. Physical Review X, 2021, 11(4): 041011 doi: 10.1103/PhysRevX.11.041011
|
[114] |
Mcclean J R, Boixo S, Smelyanskiy V N, et al. Barren plateaus in quantum neural network training landscapes[J]. Nature Communications, 2018, 9(1): 4812 doi: 10.1038/s41467-018-07090-4
|
[115] |
Monteiro C A, Gustavo Filho I, Costa M H J, et al. Quantum neuron with real weights[J]. Neural Networks, 2021, 143: 698−708 doi: 10.1016/j.neunet.2021.07.034
|
[116] |
Hu Zhirui, Li Jinyang, Pan Zhenyu, et al. On the design of quantum graph convolutional neural network in the NISQ-era and beyond[C]//Proc of the 40th Int Conf on Computer Design (ICCD). Piscataway, NJ: IEEE, 2022: 290−297
|
[117] |
Shepherd D, Bremner M J. Temporally unstructured quantum computation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2105): 1413−1439 doi: 10.1098/rspa.2008.0443
|
[118] |
Amin M H, Andriyash E, Rolfe J, et al. Quantum Boltzmann machine[J]. Physical Review X, 2018, 8(2): 021050 doi: 10.1103/PhysRevX.8.021050
|
[119] |
Kieferová M, Wiebe N. Tomography and generative training with quantum Boltzmann machines[J]. Physical Review A, 2017, 96(6): 062327 doi: 10.1103/PhysRevA.96.062327
|
[120] |
Huijgen O,Coopmans L,Najafi P,et al. Training quantum Boltzmann machines with the β-variational quantum eigensolver[J]. Machine Learning:Science and Technology,2024,5(2):025017
|
[121] |
Khoshaman A, Vinci W, Denis B, et al. Quantum variational autoencoder[J]. Quantum Science and Technology, 2018, 4(1): 014001 doi: 10.1088/2058-9565/aada1f
|
[122] |
Huang Changjiang, Ma Hailan, Yin Qi, et al. Realization of a quantum autoencoder for lossless compression of quantum data[J]. Physical Review A, 2020, 102(3): 032412 doi: 10.1103/PhysRevA.102.032412
|
[123] |
Cerezo M, Sone A, Volkoff T, et al. Cost function dependent barren plateaus in shallow parametrized quantum circuits[J]. Nature Communications, 2021, 12(1): 1791 doi: 10.1038/s41467-021-21728-w
|
[124] |
Dallaire-Demers P L, Killoran N. Quantum generative adversarial networks[J]. Physical Review A, 2018, 98(1): 012324 doi: 10.1103/PhysRevA.98.012324
|
[125] |
Tian Jinkai, Sun Xiaoyu, Du Yuxuan, et al. Recent advances for quantum neural networks in generative learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12321−12340 doi: 10.1109/TPAMI.2023.3272029
|
[126] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]//Proc of the 28th Conf on Neural Information Processing Systems (NeurIPS). La Jolla, CA: NIPS, 2014, 2672−2680
|
[127] |
Carleo G, Cirac I, Cranmer K, et al. Machine learning and the physical sciences[J]. Reviews of Modern Physics, 2019, 91(4): 045002 doi: 10.1103/RevModPhys.91.045002
|
[128] |
Hu Ling, Wu Shuhao, Cai Weizhou, et al. Quantum generative adversarial learning in a superconducting quantum circuit[J]. Science Advances, 2019, 5(1): eaav2761 doi: 10.1126/sciadv.aav2761
|
[129] |
Kim L, Lloyd S, Marvian M. Hamiltonian quantum generative adversarial networks[J]. Physical Review Research, 2024, 6(3): 033019 doi: 10.1103/PhysRevResearch.6.033019
|
[130] |
Du Yuxuan, Hsieh M H, Tao Dacheng. Efficient online quantum generative adversarial learning algorithms with applications[J]. arXiv preprint arXiv: 1904.09602, 2019
|
[131] |
Pan Minghua, Wang Bin, Tao Xiaoling, et al. Application of quantum generative adversarial network to the abnormal user behavior detection and evaluation[J]. arXiv preprint, arXiv: 2208.09834, 2022
|
[132] |
Watkins C J, Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3/4): 279−292 doi: 10.1023/A:1022676722315
|
[133] |
Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. arXiv preprint, arXiv: 1312.5602, 2013
|
[134] |
Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double Q-learning[C]//Proc of the 30th AAAI Conf on Artificial Intelligence. Menlo Park, CA: AAAI, 2016: 2094−2100
|
[135] |
Jerbi S, Gyurik C, Marshall S, et al. Parametrized quantum policies for reinforcement learning[C]//Proc of the 35th Annual Conf on Neural Information Processing Systems (NeurIPS). La Jolla, CA: NIPS, 2021: 28362−28375
|
[136] |
Jerbi S, Cornelissen A, Ozols M, et al. Quantum policy gradient algorithms[J]. arXiv preprint, arXiv: 2212.09328, 2022
|
[137] |
Wu Shaojun, Jin Shan, Wen Dingding, et al. Quantum reinforcement learning in continuous action space[J]. arXiv preprint, arXiv: 2012.10711, 2020
|
[138] |
Ostaszewski M, Trenkwalder L M, Masarczyk W, et al. Reinforcement learning for optimization of variational quantum circuit architectures[C]//Proc of the 35th Conf on Neural Information Processing Systems (NeurIPS). La Jolla, CA: NIPS, 2021: 18182−18194
|
[139] |
Wang S, Fontana E, Cerezo M, et al. Noise-induced barren plateaus in variational quantum algorithms[J]. Nature Communications, 2021, 12(1): 6961 doi: 10.1038/s41467-021-27045-6
|
[140] |
Liang Zhiding, Wang Hanrui, Cheng Jinglei, et al. Variational quantum pulse learning[C]//Proc of the 3rd IEEE Int Conf on Quantum Computing and Engineering (QCE). Los Alamitos, CA: IEEE Computer Society, 2022: 556−565
|
[141] |
Meitei O R, Gard B T, Barron G S, et al. Gatefree state preparation for fast variational quantum eigensolver simulations[J]. NPJ Quantum Information, 2021, 7(1): 155 doi: 10.1038/s41534-021-00493-0
|
[142] |
Liang Zhiding, Cheng Jinglei, Ren Hang, et al. NAPA: Intermediate-level variational native-pulse Ansatz for variational quantum algorithms[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43(6): 1834−1847 doi: 10.1109/TCAD.2024.3355277
|
[143] |
Rattew A G, Hu S, Pistoia M, et al. A domain-agnostic, noise-resistant, hardware-efficient evolutionary variational quantum eigensolver[J]. arXiv preprint, arXiv: 1910.09694, 2019
|
[144] |
Havlíček V, Córcoles A D, Temme K, et al. Supervised learning with quantum-enhanced feature spaces[J]. Nature, 2019, 567(7747): 209−212 doi: 10.1038/s41586-019-0980-2
|
[145] |
Stilck França D, Garcia-Patron R. Limitations of optimization algorithms on noisy quantum devices[J]. Nature Physics, 2021, 17(11): 1221−1227 doi: 10.1038/s41567-021-01356-3
|
[146] |
Chen Yiting, Farquhar C, Parrish R M. Low-rank density-matrix evolution for noisy quantum circuits[J]. NPJ Quantum Information, 2021, 7(1): 61 doi: 10.1038/s41534-021-00392-4
|
[147] |
Sharma K, Khatri S, Cerezo M, et al. Noise resilience of variational quantum compiling[J]. New Journal of Physics, 2020, 22(4): 043006 doi: 10.1088/1367-2630/ab784c
|
[148] |
Skolik A, Mcclean J R, Mohseni M, et al. Layerwise learning for quantum neural networks[J]. Quantum Machine Intelligence, 2021, 3(1): 5 doi: 10.1007/s42484-020-00036-4
|
[149] |
Volkoff T,Coles P J. Large gradients via correlation in random parameterized quantum circuits[J]. Quantum Science and Technology,2021,6(2):025008
|
[150] |
Endo S, Cai Z, Benjamin S C, et al. Hybrid quantumclassical algorithms and quantum error mitigation[J]. Journal of the Physical Society of Japan, 2021, 90(3): 032001 doi: 10.7566/JPSJ.90.032001
|
[151] |
Bilkis M, Cerezo M, Verdon G, et al. A semi-agnostic Ansatz with variable structure for quantum machine learning[J]. arXiv preprint, arXiv: 2103.06712, 2021
|
[152] |
Weber M, Liu Nana, Li Bo, et al. Optimal provable robustness of quantum classification via quantum hypothesis testing[J]. NPJ Quantum Information, 2021, 7(1): 76 doi: 10.1038/s41534-021-00410-5
|
[153] |
Du Yuxuan, Hsieh M H, Liu Tongliang, et al. Quantum noise protects quantum classifiers against adversaries[J]. Physical Review Research, 2021, 3(2): 023153 doi: 10.1103/PhysRevResearch.3.023153
|
[154] |
Liu Junyu, Wilde F, Mele A A, et al. Stochastic noise can be helpful for variational quantum algorithms[J]. arXiv preprint, arXiv: 2210.06723, 2022
|
[155] |
Gentini L, Cuccoli A, Pirandola S, et al. Noise-resilient variational hybrid quantum-classical optimization[J]. Physical Review A, 2020, 102(5): 052414 doi: 10.1103/PhysRevA.102.052414
|
[156] |
Zhang Kaining, Liu Liu, Hsieh M H, et al. Escaping from the barren plateau via Gaussian initializations in deep variational quantum circuits[C]//Proc of the 36th Conf on Neural Information Processing Systems (NeurIPS). La Jolla, CA: NIPS, 2022: 18612−18627
|
[157] |
Cervera-Lierta A, Kottmann J S, Aspuruguzik A. Meta-variational quantum eigensolver: Learning energy profiles of parameterized hamiltonians for quantum simulation[J]. PRX Quantum, 2021, 2(2): 020329 doi: 10.1103/PRXQuantum.2.020329
|
[158] |
Harrow A W, Low R A. Random quantum circuits are approximate 2-designs[J]. Communications in Mathematical Physics, 2009, 291(1): 257−302 doi: 10.1007/s00220-009-0873-6
|
[159] |
Holmes Z, Sharma K, Cerezo M, et al. Connecting Ansatz expressibility to gradient magnitudes and barren plateaus[J]. PRX Quantum, 2022, 3(1): 010313 doi: 10.1103/PRXQuantum.3.010313
|
[160] |
Sharma K, Cerezo M, Cincio L, et al. Trainability of dissipative perceptron-based quantum neural networks[J]. Physical Review Letters, 2022, 128(18): 180505 doi: 10.1103/PhysRevLett.128.180505
|
[161] |
Kashif M, Al-Kuwari S. The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices[J]. Machine Learning: Science and Technology, 2023, 4(1): 015004 doi: 10.1088/2632-2153/acb12f
|
[162] |
Sim S, Johnson P D, Aspuru-Guzik A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms[J]. Advanced Quantum Technologies, 2019, 2(12): 1900070 doi: 10.1002/qute.201900070
|
[163] |
Nielsen M A, Dawson C M, Dodd J L, et al. Quantum dynamics as a physical resource[J]. Physical Review A, 2003, 67(5): 052301
|
[164] |
Jaques S, Rattew A G. Qram: A survey and critique[J]. arXiv preprint, arXiv: 2305.10310, 2023
|
[165] |
Phalak K, Li Junde, Ghosh S. Trainable PQC-based QRAM for quantum storage[J]. IEEE Access, 2023, 11: 51892−51899 doi: 10.1109/ACCESS.2023.3278600
|
[166] |
付祥,郑宇真,苏醒,等. 一种面向含噪中尺度量子技术的量子-经典异构计算系统[J]. 计算机研究与发展,2021,58(9):1875−1896 doi: 10.7544/issn1000-1239.2021.20210368
Fu Xiang, Zheng Yuzhen, Su Xing, et al. A heterogeneous quantum-classical computing system targeting noisy intermediate-scale quantum technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875−1896 (in Chinese) doi: 10.7544/issn1000-1239.2021.20210368
|
[167] |
Verdon G, Pye J, Broughton M. A universal training algorithm for quantum deep learning[J]. arXiv preprint, arXiv: 1806.09729, 2018
|
[1] | Liu Wenjie, Wang Bosi, Chen Junxiu. A Quantum Principal Component Analysis Algorithm for Clustering Problems[J]. Journal of Computer Research and Development, 2022, 59(12): 2858-2866. DOI: 10.7544/issn1000-1239.20210333 |
[2] | Zhang Zhongya, Wu Wenling, Zou Jian. Quantum Differential Collision Key Recovery Attack of Multi-Round EM Structure[J]. Journal of Computer Research and Development, 2021, 58(12): 2811-2818. DOI: 10.7544/issn1000-1239.2021.20200427 |
[3] | Fu Xiang, Zheng Yuzhen, Su Xing, Yu Jintao, Xu Weixia, Wu Junjie. A Heterogeneous Quantum-Classical Computing System Targeting Noisy Intermediate-Scale Quantum Technology[J]. Journal of Computer Research and Development, 2021, 58(9): 1875-1896. DOI: 10.7544/issn1000-1239.2021.20210368 |
[4] | Zhang Yukun, Yuan Xiao. Quantum Error Mitigation: A Review[J]. Journal of Computer Research and Development, 2021, 58(9): 1843-1855. DOI: 10.7544/issn1000-1239.2021.20210367 |
[5] | Pan Shijie, Gao Fei, Wan Linchun, Qin Sujuan, Wen Qiaoyan. Quantum Algorithm for Spectral Regression[J]. Journal of Computer Research and Development, 2021, 58(9): 1835-1842. DOI: 10.7544/issn1000-1239.2021.20210366 |
[6] | Wang Yongli, Xu Qiuliang. Principle and Research Progress of Quantum Computation and Quantum Cryptography[J]. Journal of Computer Research and Development, 2020, 57(10): 2015-2026. DOI: 10.7544/issn1000-1239.2020.20200615 |
[7] | Li Panchi, Zhou Hongyan. Model and Algorithm of Quantum Neural Network Based on the Controlled Hadamard Gates[J]. Journal of Computer Research and Development, 2015, 52(1): 211-220. DOI: 10.7544/issn1000-1239.2015.20131016 |
[8] | Xi Zhengjun and Li Yongming. Measurement-Based Quantum Circuits Model[J]. Journal of Computer Research and Development, 2011, 48(11): 2155-2160. |
[9] | Li Zhiqiang, Chen Hanwu, Xu Baowen, Liu Wenjie. Fast Algorithms for Synthesis of Quantum Reversible Logic Circuits Based on Hash Table[J]. Journal of Computer Research and Development, 2008, 45(12): 2162-2171. |
[10] | Du Weilin, Li Bin, and Tian Yu. Quantum Annealing Algorithms: State of the Art[J]. Journal of Computer Research and Development, 2008, 45(9): 1501-1508. |
1. |
刘嘉宇,李贺,谷莹,袁翠敏,祝琳琳. 基于高阶交互网络的在线群体观点演化机理模型构建研究. 情报理论与实践. 2025(02): 124-135 .
![]() | |
2. |
邱馨锐,赵文,吴长汶,张斐,杨朝阳,李灿东,周常恩. 刍议高阶关系在中医隐性知识显性化研究中的关键作用. 福建中医药. 2024(08): 24-26+30 .
![]() |