• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lin Yuxiu, Liu Hui, Yu Xiao, Zhang Caiming. A Multi-View Unified Representation Learning Network for Subspace Clustering[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440431
Citation: Lin Yuxiu, Liu Hui, Yu Xiao, Zhang Caiming. A Multi-View Unified Representation Learning Network for Subspace Clustering[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440431

A Multi-View Unified Representation Learning Network for Subspace Clustering

Funds: This work was supported by the National Natural Science Foundation of China (62072274, U22A2033), the Central Guidance on Local Science and Technology Development Project (YDZX2022009), and the Special Funds of Taishan Scholars Project of Shandong Province (tstp20221137).
More Information
  • Author Bio:

    Lin Yuxiu: born in 1996. PhD candidate. Her main research interests include data mining and visualization, and multi-view learning

    Liu Hui: born in 1978. PhD, professor, PhD supervisor. Member of CCF. Her main research interests include machine learning, data mining and image processing

    Yu Xiao: born in 1981. PhD, associate professor, master supervisor. Member of CCF. Her main research interests include statistical machine learning and data mining

    Zhang Caiming: born in 1955. PhD, professor, PhD supervisor. Senior member of CCF. His main research interests include CAGD&CG, information visualization and image processing

  • Received Date: November 29, 2023
  • Revised Date: November 29, 2023
  • Accepted Date: October 14, 2024
  • Available Online: October 21, 2024
  • Multi-view subspace clustering aims to explore rich information across views to guide the clustering process. The key lies in effectively learning the unified representation and subspace representation between views. Recently, deep clustering methods have achieved promising effects due to the powerful representation capability of neural networks. However, the multi-source heterogeneity inherent in multi-view data allows existing methods to encode each view independently with a unimodal encoder, increasing the number of model parameters and limiting the model's generalization capability. Besides, low-rank subspace representation has been shown to facilitate clustering performance, while traditional nuclear norm regularization does not consider the difference between different singular values, leading to biased estimation. To tackle these two problems, we propose a novel multi-view unified representation learning network (namely, MURLN) for subspace clustering. Specifically, MURLN first uses the Transformer as the encoder architecture, which projects different views into the low-dimensional feature space with the same mapping rule by sharing parameters. In addition, a weighted fusion strategy for intra-view samples is conducted to learn a unified representation rationally. Finally, the weighted Schatten p-norm is introduced as the low-rank constraint of the subspace representation matrix. Extensive experiments on seven multi-view datasets verify the effectiveness and superiority of our proposed method.

  • [1]
    刘新旺. 多视图学习的基础理论和方法研究[J]. 中国基础科学,2022,24(3):27−34 doi: 10.3969/j.issn.1009-2412.2022.03.004

    Liu Xinwang. Research on the fundamental theory and methods of multi-view learning[J]. China Basic Science, 2022, 24(3): 27−34 (in Chinese) doi: 10.3969/j.issn.1009-2412.2022.03.004
    [2]
    梁吉业,刘晓琳. 多视图聚类研究进展与展望[J]. 山西大学学报:自然科学版,2022,45(3):612−621

    Liang Jiye, Liu Xiaolin. Research progress and prospects of multi-view clustering[J]. Journal of Shanxi University: Natural Science Edition, 2022, 45(3): 612−621 (in Chinese)
    [3]
    只有卷和编号

    Li Jinxing, Zhou Chuhao, Ji Xiaoqiang, et al. Multi-view instance attention fusion network for classification[J]. Information Fusion, 2024, 101: 101974
    [4]
    Zhang Dongxu, Yan Yang , Huang Yulin, et al. Unsupervised Cryo-EM images denoising and clustering based on deep convolutional autoencoder and K-Means++[J]. IEEE Transactions on Medical Imaging, 2023, 42(5): 1509−1521
    [5]
    龚卫华,金蓉,裴小兵,等. LBSN中基于社区联合聚类的协同推荐方法[J]. 计算机研究与发展,2019,56(11):2506−2517 doi: 10.7544/issn1000-1239.2019.20180673

    Gong Weihua, Jin Rong, Pei Xiaobing, et al. Collaborative recommendation method based on community co-clustering in location based social networks[J]. Journal of Computer Research and Development, 2019, 56(11): 2506−2517 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180673
    [6]
    Cao Congqi, Zhang Xin, Zhang Shizhou, et al. Weakly supervised video anomaly detection based on cross-batch clustering guidance[C]//Proc of the 14th Int Conf on Multimedia and Expo. Piscataway, NJ: IEEE, 2023: 2723−2728
    [7]
    Kumar A, Rai P, Daumé H. Co-regularized multi-view spectral clustering[C]//Proc of the 25th Annual Conf on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2011: 1413−1421
    [8]
    夏冬雪,杨燕,王浩,等. 基于邻域多核学习的后融合多视图聚类算法[J]. 计算机研究与发展,2020,57(8):1627−1638 doi: 10.7544/issn1000-1239.2020.20200212

    Xia Dongxue, Yang Yan, Wang Hao, et al. Late fusion multi-view clustering based on local multi-kernel learning[J]. Journal of Computer Research and Development, 2020, 57(8): 1627−1638 (in Chinese) doi: 10.7544/issn1000-1239.2020.20200212
    [9]
    Tang Chang, Liu Xinwang, Zhu Xinzhong, et al. CGD: Multi-view clustering via cross-view graph diffusion[C]//Proc of the 34th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2020: 5924−5931
    [10]
    没有届

    Zhang Changqing, Hu Qinghua, Fu Huazhu, et al. Latent multi-view subspace clustering[C]//Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 4333−4341
    [11]
    只有卷和编号

    Zhang Guangyu, Huang Dong, Wang Changdong. Facilitated low-rank multi-view subspace clustering[J]. Knowledge-Based Systems, 2022, 260: 110141
    [12]
    只有卷

    Wang Qianqian, Cheng Jiafeng, Gao Quanxue, et al. Deep multi-view subspace clustering with unified and discriminative learning[J]. IEEE Transactions on Multimedia, 2021, 23: 3483−3493
    [13]
    只有卷和编号

    Liu Zhaohu, Song Peng. Deep low-rank tensor embedding for multi-view subspace clustering[J]. Expert Systems with Applications, 2023, 237: 121518
    [14]
    Wang Jing, Feng Songhe, Lyu Gengyu, et al. Triple-granularity contrastive learning for deep multi-view subspace clustering[C]//Proc of the 31st ACM Int Conf on Multimedia. New York: ACM, 2023: 2994−3002
    [15]
    Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533−536 doi: 10.1038/323533a0
    [16]
    Abavisani M, Patel V. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601−1614 doi: 10.1109/JSTSP.2018.2875385
    [17]
    Zhu Pengfei, Hui Binyuan, Zhang Changqing, et al. Multi-view deep subspace clustering networks[J]. arXiv preprint, arXiv: 1908.01978, 2019
    [18]
    没有届

    Zhang Changqing, Liu Yeqing, Fu Huazhu. AE2-Nets: Autoencoder in autoencoder networks[C]//Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 2577−2585
    [19]
    Li Kai, Liu Hongfu, Zhang Yulun, et al. Self-guided deep multiview subspace clustering via consensus affinity regularization[J]. IEEE Transactions on Cybernetics, 2022, 52(12): 12734−12744 doi: 10.1109/TCYB.2021.3087746
    [20]
    Cui Chenhang, Ren Yazhou, Pu Jingyu, et al. Deep multi-view subspace clustering with anchor graph[C]//Proc of the 32nd Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2023: 3577−3585
    [21]
    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Proc of the 31st Annual Conf on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2017: 5998−6008
    [22]
    Xu Peng, Zhu Xiatian, Clifton D. Multimodal learning with Transformers: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12113−12132 doi: 10.1109/TPAMI.2023.3275156
    [23]
    只有卷

    Han Xue, Wang Yitong, Feng Junlan, et al. A survey of transformer-based multimodal pre-trained modals[J]. Neurocomputing, 2023, 515: 89−106
    [24]
    Xie Yuan, Gu Shuhang, Liu Yan, et al. Weighted schatten p-norm minimization for image denoising and background subtraction[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4842−4857 doi: 10.1109/TIP.2016.2599290
    [25]
    Elhamifar E, Vidal R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765−2781 doi: 10.1109/TPAMI.2013.57
    [26]
    Liu Guangcan, Lin Zhouchen, Yan Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171−184 doi: 10.1109/TPAMI.2012.88
    [27]
    Shi Jianbo, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888−905 doi: 10.1109/34.868688
    [28]
    没有届

    Li Ruihuang, Zhang Changqing, Fu Huazhu, et al. Reciprocal multi-layer subspace learning for multi-view clustering[C]//Proc of the IEEE Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2019: 8171−8179
    [29]
    Zhou Tao, Zhang Changqing, Peng Xi, et al. Dual shared-specific multiview subspace clustering[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3517−3530 doi: 10.1109/TCYB.2019.2918495
    [30]
    没有届

    Cao Xiaochun, Zhang Changqing, Fu Huazhu, et al. Diversity-induced multi-view subspace clustering[C]//Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 586−594
    [31]
    只有卷

    Zheng Qinghai, Zhu Jihua, Ma Yuanyuan, et al. Multi-view subspace clustering networks with local and global graph information[J]. Neurocomputing, 2021, 449: 15−23
    [32]
    只有卷和编号

    Wang Jiao, Wu Bin, Ren Zhenwen, et al. Decomposed deep multi-view subspace clustering with self-labeling supervision[J]. Information Sciences, 2024, 653: 119798
    [33]
    Zhang Changqing, Fu Huazhu, Hu Qinghua, et al. Generalized latent multi-view subspace clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86−99 doi: 10.1109/TPAMI.2018.2877660
    [34]
    Wang Qianqian, Tao Zhiqiang, Gao Quanxue, et al. Multi-view subspace clustering via structured multi-pathway network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 7244−7250 doi: 10.1109/TNNLS.2022.3213374
    [35]
    Masci J, Meier U, Ciresan D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction[C]//Proc of the 21st Int Conf on Artificial Neural Networks. Berlin: Springer, 2011: 52−59
    [36]
    Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137−1149 doi: 10.1109/TPAMI.2016.2577031
    [37]
    Devlin J, Chang Mingwei, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv: 1810.04805, 2018
    [38]
    只有卷

    Wei Xia, Wang Tianxiu, Gao Quanxue, et al. Graph embedding contrastive multi-modal representation learning for clustering[J]. IEEE Transactions on Image Processing, 2023, 32: 1170−1183
    [39]
    只有卷

    Wang Qianqian, Lian Huanhuan, Sun Gan, et al. iCmSC: Incomplete cross-modal subspace clustering[J]. IEEE Transactions on Image Processing, 2020, 30: 305−317
    [40]
    只有卷

    Lu Runkun, Liu Jianwei, Zuo Xin. Attentive multi-view deep subspace clustering net[J]. Neurocomputing, 2021, 435: 186−196
    [41]
    Xie Yuan, Tao Dacheng, Zhang Wensheng, et al. On unifying multi-view self-representations for clustering by tensor multi-rank minimization[J]. International Journal of Computer Vision, 2018, 126(11): 1157−1179 doi: 10.1007/s11263-018-1086-2
    [42]
    于晓,刘慧,林毓秀,等. 一致性引导的自适应加权多视图聚类[J]. 计算机研究与发展,2022,59(7):1496−1508 doi: 10.7544/issn1000-1239.20210126

    Yu Xiao, Liu Hui, Lin Yuxiu, et al. Consensus guided auto-weighted multi-view clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496−1508 (in Chinese). doi: 10.7544/issn1000-1239.20210126
    [43]
    只有卷

    Zheng Qinghai, Zhu Jihua, Li Zhongyu, et al. Feature concatenation multi-view subspace clustering[J]. Neurocomputing, 2019, 379: 89−102
    [44]
    Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv preprint, arXiv: 2010.11929, 2020
    [45]
    Xie Yuan, Qu Yanyun, Tao Dacheng, et al. Hyperspectral image restoration via iteratively regularized weighted schatten p-norm minimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4642−4659 doi: 10.1109/TGRS.2016.2547879
    [46]
    Nie Feiping, Huang Heng, Ding C. Low-rank matrix recovery via efficient schatten p-norm minimization[C]//Proc of the 26th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2012: 655−661
    [47]
    只有卷

    Cai Xiaosha, Huang Dong, Zhang Guangyu, et al. Seeking commonness and inconsistencies: A jointly smoothed approach to multi-view subspace clustering[J]. Information Fusion, 2023, 91: 364−375
    [48]
    Cui Jinrong, Li Yuting, Fu Yulu, et al. Multi-view self-expressive subspace clustering network[C]//Proc of the 31st ACM Int Conf on Multimedia. New York: ACM, 2023: 417−425
    [49]
    赵博宇,张长青,陈蕾,等. 生成式不完整多视图数据聚类[J]. 自动化学报,2021,47(8):1867−1875

    Zhao Boyu, Zhang Changqing, Chen Lei, et al. Generative model for partial multi-view clustering[J]. Acta Automatica Sinica, 2021, 47(8): 1867−1875 (in Chinese)
  • Related Articles

    [1]Peng Yingtao, Meng Xiaofeng, Du Zhijuan. Survey on Diversified Recommendation[J]. Journal of Computer Research and Development, 2025, 62(2): 285-313. DOI: 10.7544/issn1000-1239.202330600
    [2]MB-HGCN: A Hierarchical Graph Convolutional Network for Multi-behavior Recommendation“CCIR 2024推荐”[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440770
    [3]Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
    [4]Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
    [5]Gu Liang, Yang Peng, Dong Yongqiang. A Diversified Recommendation Method for UCL in Broadcast-Storage Network[J]. Journal of Computer Research and Development, 2017, 54(8): 1631-1643. DOI: 10.7544/issn1000-1239.2017.20170128
    [6]Meng Xiangfu, Bi Chongchun, Zhang Xiaoyan, Tang Xiaoliang, Tang Yanhuan. Web Database top-k Diverse Keyword Query Suggestion Approach[J]. Journal of Computer Research and Development, 2017, 54(7): 1577-1591. DOI: 10.7544/issn1000-1239.2017.20160005
    [7]Yu Wenzhe, Sha Chaofeng, He Xiaofeng, Zhang Rong. Review Selection Considering Opinion Diversity[J]. Journal of Computer Research and Development, 2015, 52(5): 1050-1060. DOI: 10.7544/issn1000-1239.2015.20131932
    [8]Wang Xianghai, Cong Zhihuan, Fang Lingling, Song Chuanming. HMM Training Model Using Blending Population Diversity Based Aaptive Genetic Algorithm Title[J]. Journal of Computer Research and Development, 2014, 51(8): 1833-1844. DOI: 10.7544/issn1000-1239.2014.20121211
    [9]Zhang Weiguo, Yin Xia, and Wu Jianping. A Computation Method of Path Diversity Based on AS Relationships[J]. Journal of Computer Research and Development, 2012, 49(1): 167-173.
    [10]Han Jianmin, Yu Juan, Yu Huiqun, Jia Jiong. A Multi-Level l-Diversity Model for Numerical Sensitive Attributes[J]. Journal of Computer Research and Development, 2011, 48(1): 147-158.
  • Cited by

    Periodical cited type(7)

    1. 罗宇哲,李玲,侯朋朋,于佳耕,程丽敏,张常有,武延军,赵琛. 面向AIoT的协同智能综述. 计算机研究与发展. 2025(01): 179-206 . 本站查看
    2. 王蕴,林霄,楼芝兰,李军,孙卫强. 面向边缘光算力网络的上行链路资源协同调度算法. 光通信技术. 2024(03): 45-51 .
    3. 王铭源,王正国,李济顺,薛玉君. 层级式机械装备健康指数模型及管理系统构建. 金属矿山. 2024(09): 198-206 .
    4. 王睿,王岩,尹朴,齐建鹏,孙叶桃,李倩,张易达,张梅奎. 面向边缘智能的协同训练研究进展. 工程科学学报. 2023(08): 1400-1416 .
    5. 薛建强,史彦军,李波. 面向无人集群的边缘计算技术综述. 兵工学报. 2023(09): 2546-2555 .
    6. 阴彦磊,王立华,廖伟智,张万达. 融合GRU-Attention与鲸鱼算法的流程制造工艺参数云边联动优化. 计算机集成制造系统. 2023(09): 2991-3005 .
    7. 许浩,朱晓娟. SDN中基于模型划分的云边协同推理算法. 兰州工业学院学报. 2023(06): 31-37 .

    Other cited types(20)

Catalog

    Article views (29) PDF downloads (15) Cited by(27)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return