• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Yao, Kang Xiaohui, Gao Hong, Liu Qiao, Wu Zufeng, Qin Zhiguang. A Community Detecting Method Based on the Node Intimacy and Degree in Social Network[J]. Journal of Computer Research and Development, 2015, 52(10): 2363-2372. DOI: 10.7544/issn1000-1239.2015.20150407
Citation: Liu Yao, Kang Xiaohui, Gao Hong, Liu Qiao, Wu Zufeng, Qin Zhiguang. A Community Detecting Method Based on the Node Intimacy and Degree in Social Network[J]. Journal of Computer Research and Development, 2015, 52(10): 2363-2372. DOI: 10.7544/issn1000-1239.2015.20150407

A Community Detecting Method Based on the Node Intimacy and Degree in Social Network

More Information
  • Published Date: September 30, 2015
  • Social network is an extension of realistic society in cyberspace. The research on structural characteristics of social network has an important significance on network architecture discovery, network behavior forecast and network security protection. The community structure is one of the basic and important structural characteristics of social network. In recent years, a lot of algorithms for community detecting in social network have been proposed. But they always focuse on unweighted networks, and can’t handle the more and more complex connect relationships between nodes. In order to measure the connection strength in directed and weighted networks, a new definition of node intimacy is proposed. Then, a community detecting method based on node intimacy and degree (CDID) is designed. This method is verified through a series of experiments on synthetic datasets and real-world social network datasets. Compared with other state-of-the-art algorithms, this methed can obtain more accurate community division results under a reasonable run time. And it also provides a unification community detecting method for the four different type networks, such as undirected-unweighted, directed-unweighted, undirected-weighted and directed-weighted networks.
  • Related Articles

    [1]Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295
    [2]Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376
    [3]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Du Ming, Yang Yun, Zhou Junfeng, Chen Ziyang, Yang Anping. Efficient Methods for Label-Constraint Reachability Query[J]. Journal of Computer Research and Development, 2020, 57(9): 1949-1960. DOI: 10.7544/issn1000-1239.2020.20190569
    [6]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [7]Song Pan, Jing Liping. Exploiting Label Relationships in Multi-Label Classification with Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(8): 1751-1759. DOI: 10.7544/issn1000-1239.2018.20180362
    [8]Ma Gang, Du Yuge, An Bo, Zhang Bo, Wang Wei, Shi Zhongzhi. Risk Evaluation of Complex Information System Based on Threat Propagation Sampling[J]. Journal of Computer Research and Development, 2015, 52(7): 1642-1659. DOI: 10.7544/issn1000-1239.2015.20140184
    [9]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [10]She Qiaoqiao, Yu Yang, Jiang Yuan, and Zhou Zhihua. Large-Scale Image Annotation via Random Forest Based Label Propagation[J]. Journal of Computer Research and Development, 2012, 49(11): 2289-2295.

Catalog

    Article views (1820) PDF downloads (2040) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return