• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ouyang Dantong, Jia Fengyu, Liu Siguang, Zhang Liming. An Algorithm Based on Extension Rule For Solving #SAT Using Complementary Degree[J]. Journal of Computer Research and Development, 2016, 53(7): 1596-1604. DOI: 10.7544/issn1000-1239.2016.20150032
Citation: Ouyang Dantong, Jia Fengyu, Liu Siguang, Zhang Liming. An Algorithm Based on Extension Rule For Solving #SAT Using Complementary Degree[J]. Journal of Computer Research and Development, 2016, 53(7): 1596-1604. DOI: 10.7544/issn1000-1239.2016.20150032

An Algorithm Based on Extension Rule For Solving #SAT Using Complementary Degree

More Information
  • Published Date: June 30, 2016
  • The #SAT problem also called model counting is one of the important and challenging problems in artificial intelligence. It is used widely in the field of artificial intelligence. After doing the in-depth study of model counting algorithm CER that is based on Extension Rule, we propose a method using complementary degree for #SAT problem in this paper. We formalize the computing procedure of solving #SAT problem by introducing SE-Tree which produces all the subsets of clause set that need to be computed. As the closed nodes are added into the SE-Tree, the most subsets that contain complementary literal(s) can never be produced, and the true resolutions cannot be missed by pruning either. Then the concept of complementary degree is presented in this paper, and the nodes of SE-Tree are extended in accordance with the descending order of complementary degree. With this extended order, the subsets that contain complementary literal(s) and have smaller size can not only be generated early, but also can reduce the number of generated nodes that are redundant. Moreover the calculation for deciding the complementarity of subsets is reduced. Results show that the corresponding algorithm runs faster than CER algorithm and further improves the solving efficiency of problems which complementary factor is lower.
  • Related Articles

    [1]Wang Qihong, Jia Hongjie, Huang Longxia, Mao Qirong. Semantic Contrastive Clustering with Federated Data Augmentation[J]. Journal of Computer Research and Development, 2024, 61(6): 1511-1524. DOI: 10.7544/issn1000-1239.202220995
    [2]Zhu Yingwen, Chen Songcan. High Dimensional Data Stream Clustering Algorithm Based on Random Projection[J]. Journal of Computer Research and Development, 2020, 57(8): 1683-1696. DOI: 10.7544/issn1000-1239.2020.20200432
    [3]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [4]Hou Wei, Dong Hongbin, Yin Guisheng. A Membership Degree Refinement-Based Evolutionary Clustering Algorithm[J]. Journal of Computer Research and Development, 2013, 50(3): 548-558.
    [5]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [6]Lü Zonglei, Wang Jiandong, Li Ying, and Zai Yunfeng. An Index of Cluster Validity Based on Modal Logic[J]. Journal of Computer Research and Development, 2008, 45(9): 1477-1485.
    [7]Zhang Gang, Liu Yue, Guo Jiafeng, and Cheng Xueqi. A Hierarchical Search Result Clustering Method[J]. Journal of Computer Research and Development, 2008, 45(3): 542-547.
    [8]Jin Yifu, Zhu Qingsheng, Xing Yongkang. An Algorithm for Clustering of Outliers Based on Key Attribute Subspace[J]. Journal of Computer Research and Development, 2007, 44(4): 651-659.
    [9]Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.
    [10]Duan Jiangjiao, Xue Yongsheng, Lin Ziyu, Wang Wei, Shi Baile. A Novel Hidden Markov Model-Based Hierarchical Time-Series Clustering Algorithm[J]. Journal of Computer Research and Development, 2006, 43(1): 61-67.
  • Cited by

    Periodical cited type(24)

    1. 王辉,张晓明,鲍丽芳,惠安,肖岚. 基于云存储的电子档案数据跨域安全检索算法研究. 集成电路与嵌入式系统. 2025(03): 66-72 .
    2. 赵建伟,赵光,王震,李奇,柯利军. 基于时域-频域哈希编码的电力海量空间数据智能化检索系统. 自动化与仪器仪表. 2025(04): 301-303 .
    3. 李鹏,林显,曾旭川. 基于智能索引算法的集控设备事故辅助预警方法研究. 电子设计工程. 2024(05): 131-135 .
    4. 何远景,李光龙. 基于多级索引表的金融业务数据库精准查询方法. 安阳工学院学报. 2024(02): 60-64 .
    5. 苏蕊,王亚婷,闫润珍,王悦. 基于近似匹配模型的电网多模态数据检索研究. 电子设计工程. 2024(07): 153-157 .
    6. 蓝晓东,赵敏彤,黄欣,肖勇. 基于H型指数的AI多维知识地图信息检索研究. 自动化技术与应用. 2024(06): 112-115 .
    7. 窦雪倩,王文兵,刘美琪. 面向电磁态势的空间网格处理方法研究. 舰船电子对抗. 2024(05): 70-74 .
    8. 王永志,李逸清,康念坤,王宝娟,杨梦茜,陈健. 基于GIS的农地权属公示图自动生成方法. 苏州科技大学学报(自然科学版). 2024(04): 114-119 .
    9. 赖欣,梁昌盛,朱美玲. 基于时空数据模型的障碍物数据集数据查询与应用研究. 航空工程进展. 2023(01): 165-174 .
    10. 马芳平,李林,郭金婷,柳玉兰,徐镭梦. 基于粒子群算法的科技创新数据检索系统设计. 电子设计工程. 2023(15): 66-69+74 .
    11. 孙妍,张俊超,薛峪峰. 基于流量检测的目标大数据快速检索系统设计. 电子设计工程. 2023(17): 182-186 .
    12. 余豪东,陈玉明,吴克寿,韩锋钢. 决策粒K均值聚类算法. 闽南师范大学学报(自然科学版). 2023(03): 1-13 .
    13. 李雪琛,张齐. 开源网络空间大数据暴力破解攻击识别算法设计. 吉林大学学报(信息科学版). 2023(06): 1086-1092 .
    14. 胡媛媛,江春然,甘杜芬. 基于群体智能算法的大数据分布式存储方法. 计算机仿真. 2023(11): 447-451 .
    15. 方圆,王丽珍,王晓璇,杨培忠. 基于空间占有度的主导并置模式挖掘. 计算机研究与发展. 2022(02): 264-281 . 本站查看
    16. 蒋贞慧. 基于多层感知学习的工程档案大数据检索系统设计. 自动化与仪器仪表. 2022(02): 69-72 .
    17. 焦洋洋,刘平芝,熊顺,徐道柱. 基于自然格网索引的多尺度面实体增量级联更新方法. 地球信息科学学报. 2022(05): 851-863 .
    18. 王丹,王玫. 一种适用于内部信息统筹与服务对像信息快速检索仿真设计. 粘接. 2022(11): 169-173 .
    19. 杨凤丽,李娜,刘仁芬. 基于多级索引的高维数据近似最近邻搜索. 计算机仿真. 2022(11): 398-401 .
    20. 朱小龙,谢忠. 基于机器学习的地理空间数据抽取算法. 吉林大学学报(工学版). 2021(03): 1011-1016 .
    21. 陶建平,曹霞. 云环境下多核仿真平台虚拟任务数据索引. 计算机仿真. 2021(11): 389-393 .
    22. 李盼盼,赵浩,林慧恩. 基于相似树查询的隐私大数据定向检索算法. 计算机仿真. 2021(11): 429-432+437 .
    23. 陈伊玲. 基于地理空间大数据的复合空间索引. 测绘通报. 2021(S2): 276-279+284 .
    24. 廖芳芳,裴春营,李永峰. 基于最高层级的影像分布式切片技术研究. 计算机产品与流通. 2020(10): 38-39 .

    Other cited types(13)

Catalog

    Article views (1070) PDF downloads (464) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return