• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.
Citation: Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.

Locality Preserving Clustering for Image Database

More Information
  • Published Date: March 14, 2006
  • It is important and challenging to make the growing image repositories easy to search and browse. Image clustering is a technique that helps in several ways, including image data preprocessing, the user interface design, and search result representation. Spectral clustering method has been one of the most promising clustering methods in the last few years, because it can cluster data with complex structure, and the (nearly) global optimum is guaranteed. However, the existingspectral clustering algorithms, like normalized cut (NCut), are difficult to use to handle data points out of training set. In this paper, a clustering algorithm named LPC (locality preserving clustering) is proposed, which shares many of the data representation properties of nonlinear spectral method. Yet the LPC provides an explicit mapping function, which is defined everywhere, on both training data points and testing points. Experimental results show that LPC is more accurate than both “direct Kmeans” and “PCA+Kmeans”. It is also shownhat LPC produces comparable results with NCut, yet is more efficient than NCut.
  • Related Articles

    [1]Fu Nan, Ni Weiwei, Jiang Zepeng, Hou Lihe, Zhang Dongyue, Zhang Ruyu. Directed Graph Clustering Algorithm with Edge Local Differential Privacy[J]. Journal of Computer Research and Development, 2025, 62(1): 256-268. DOI: 10.7544/issn1000-1239.202330193
    [2]Zhu Yingwen, Chen Songcan. High Dimensional Data Stream Clustering Algorithm Based on Random Projection[J]. Journal of Computer Research and Development, 2020, 57(8): 1683-1696. DOI: 10.7544/issn1000-1239.2020.20200432
    [3]Xia Dongxue, Yang Yan, Wang Hao, Yang Shuhong. Late Fusion Multi-View Clustering Based on Local Multi-Kernel Learning[J]. Journal of Computer Research and Development, 2020, 57(8): 1627-1638. DOI: 10.7544/issn1000-1239.2020.20200212
    [4]Jiang Huowen, Zeng Guosun, Hu Kekun. A Graph-Clustering Anonymity Method Implemented by Genetic Algorithm for Privacy-Preserving[J]. Journal of Computer Research and Development, 2016, 53(10): 2354-2364. DOI: 10.7544/issn1000-1239.2016.20160435
    [5]Xu Zhengguo, Zheng Hui, He Liang, Yao Jiaqi. Self-Adaptive Clustering Based on Local Density by Descending Search[J]. Journal of Computer Research and Development, 2016, 53(8): 1719-1728. DOI: 10.7544/issn1000-1239.2016.20160136
    [6]Hua Xiaopeng, Ding Shifei. Locality Preserving Twin Support Vector Machines[J]. Journal of Computer Research and Development, 2014, 51(3): 590-597.
    [7]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [8]Ni Weiwei, Chen Geng, Chong Zhihong, Wu Yingjie. Privacy-Preserving Data Publication for Clustering[J]. Journal of Computer Research and Development, 2012, 49(5): 1095-1104.
    [9]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [10]Wu Jiawei, Li Xiongfei, Sun Tao, and Li Wei. A Density-Based Clustering Algorithm Concerning Neighborhood Balance[J]. Journal of Computer Research and Development, 2010, 47(6): 1044-1052.

Catalog

    Article views (805) PDF downloads (453) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return