• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
Citation: Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847

Scientific Big Data Management: Concepts, Technologies and System

More Information
  • Published Date: January 31, 2017
  • In recent years, as more and more large-scale scientific facilities have been built and significant scientific experiments have been carried out, scientific research has entered an unprecedented big data era. Scientific research in big data era is a process of big science, big demand, big data, big computing, and big discovery. It is of important significance to develop a full life cycle data management system for scientific big data. In this paper, we first introduce the background of the development of scientific big data management system. Then we specify the concepts and three key characteristics of scientific big data. After an review of scientific data resource development projects and scientific data management systems, a framework is proposed aiming at the full life cycle management of scientific big data. Further, we introduce the key technologies of the management framework including data fusion, real-time analysis, long termstorage, cloud service, and data opening and sharing. Finally, we summarize the research progress in this field, and look into the application prospects of scientific big data management system.
  • Related Articles

    [1]Dai Chenglong, Li Guanghui, Li Dong, Shen Jiahua, Pi Dechang. Electroencephalogram Clustering with Multiple Regularization Constrained Pseudo Label Propagation Optimization[J]. Journal of Computer Research and Development, 2024, 61(1): 156-171. DOI: 10.7544/issn1000-1239.202220295
    [2]Wang Hang, Tian Shengzhao, Tang Qing, Chen Duanbing. Few-Shot Image Classification Based on Multi-Scale Label Propagation[J]. Journal of Computer Research and Development, 2022, 59(7): 1486-1495. DOI: 10.7544/issn1000-1239.20210376
    [3]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [4]Hu Dou, Wei Lingwei, Zhou Wei, Huai Xiaoyong, Han Jizhong, Hu Songlin. A Rumor Detection Approach Based on Multi-Relational Propagation Tree[J]. Journal of Computer Research and Development, 2021, 58(7): 1395-1411. DOI: 10.7544/issn1000-1239.2021.20200810
    [5]Du Ming, Yang Yun, Zhou Junfeng, Chen Ziyang, Yang Anping. Efficient Methods for Label-Constraint Reachability Query[J]. Journal of Computer Research and Development, 2020, 57(9): 1949-1960. DOI: 10.7544/issn1000-1239.2020.20190569
    [6]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [7]Song Pan, Jing Liping. Exploiting Label Relationships in Multi-Label Classification with Neural Networks[J]. Journal of Computer Research and Development, 2018, 55(8): 1751-1759. DOI: 10.7544/issn1000-1239.2018.20180362
    [8]Ma Gang, Du Yuge, An Bo, Zhang Bo, Wang Wei, Shi Zhongzhi. Risk Evaluation of Complex Information System Based on Threat Propagation Sampling[J]. Journal of Computer Research and Development, 2015, 52(7): 1642-1659. DOI: 10.7544/issn1000-1239.2015.20140184
    [9]Zhu Xiang, Jia Yan, Nie Yuanping, Qu Ming. Event Propagation Analysis on Microblog[J]. Journal of Computer Research and Development, 2015, 52(2): 437-444. DOI: 10.7544/issn1000-1239.2015.20140187
    [10]She Qiaoqiao, Yu Yang, Jiang Yuan, and Zhou Zhihua. Large-Scale Image Annotation via Random Forest Based Label Propagation[J]. Journal of Computer Research and Development, 2012, 49(11): 2289-2295.

Catalog

    Article views (2937) PDF downloads (1421) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return