• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ouyang Jianquan, Zhou Yong, Tang Huanrong. A Meteorological Predication Model Based on Storm and Online Sequential Extreme Learning Machine[J]. Journal of Computer Research and Development, 2017, 54(8): 1736-1743. DOI: 10.7544/issn1000-1239.2017.20170213
Citation: Ouyang Jianquan, Zhou Yong, Tang Huanrong. A Meteorological Predication Model Based on Storm and Online Sequential Extreme Learning Machine[J]. Journal of Computer Research and Development, 2017, 54(8): 1736-1743. DOI: 10.7544/issn1000-1239.2017.20170213

A Meteorological Predication Model Based on Storm and Online Sequential Extreme Learning Machine

More Information
  • Published Date: July 31, 2017
  • In order to improve the accuracy of meteorological forecasting, deal with frequent local meteorological disasters in real time, and have higher efficiency of dealing with massive data, this paper proposes a meteorological forecasting model using the Storm-based online sequential extreme learning machine. The model firstly initializes multiple online extreme learning machine. When new batches of data arrive, the model continually studies the new data samples based on the training results, and introduces the stochastic gradient descent method and the error weight adjustment method to give the error feedback for new prediction results and then update the error weight parameters in real time, and finally to improve prediction accuracy. In addition, the Storm flow processing framework is adopted to improve the proposed model in the aspect of parallelism in order to enhance the ability of dealing with massive high-dimensional data. The experimental results show that compared with the Hadoop-based parallel extreme learning machine (PELM), the proposed model has higher prediction accuracy and more excellent parallelism.
  • Related Articles

    [1]Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
    [2]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [3]Wang Meng, Wang Haofen, Li Bohan, Zhao Xiang, Wang Xin. Survey on Key Technologies of New Generation Knowledge Graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. DOI: 10.7544/issn1000-1239.20210829
    [4]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [5]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [6]Du Zhijuan, Du Zhirong, Wang Lu. Open Knowledge Graph Representation Learning Based on Neighbors and Semantic Affinity[J]. Journal of Computer Research and Development, 2019, 56(12): 2549-2561. DOI: 10.7544/issn1000-1239.2019.20190648
    [7]Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
    [8]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
    [9]Liu Zhiyuan, Sun Maosong, Lin Yankai, Xie Ruobing. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. DOI: 10.7544/issn1000-1239.2016.20160020
    [10]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
  • Cited by

    Periodical cited type(5)

    1. 张黎,骆春山,谢委员,李蓓蓓. 基于分支混淆算法的隐私数据库自适应加密方法. 计算机与现代化. 2022(03): 43-47 .
    2. 陈金娥,陈涛,童绪军. 基于混合加密算法的安全通讯系统的设计与实现. 兰州文理学院学报(自然科学版). 2022(05): 67-71+93 .
    3. 肖玉强,郭云飞,王亚文. 基于符号执行和N-scope复杂度的代码混淆度量方法. 网络与信息安全学报. 2022(06): 123-134 .
    4. 王晓龙,董玉雪. 软件多分支开发代码漏合问题及解决途径. 计算机系统应用. 2021(10): 312-318 .
    5. 鲍海燕,芦彩林,李俊丽. 基于公钥密码的通信网络安全加密系统设计. 重庆理工大学学报(自然科学). 2020(10): 146-152 .

    Other cited types(3)

Catalog

    Article views (1419) PDF downloads (520) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return