• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Jun, Pang Jianmin, Fu Liguo, Yue Feng, Shan Zheng, Zhang Jiahao. A Dynamic and Static Combined Register Mapping Method in Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(4): 708-718. DOI: 10.7544/issn1000-1239.2019.20170905
Citation: Wang Jun, Pang Jianmin, Fu Liguo, Yue Feng, Shan Zheng, Zhang Jiahao. A Dynamic and Static Combined Register Mapping Method in Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(4): 708-718. DOI: 10.7544/issn1000-1239.2019.20170905

A Dynamic and Static Combined Register Mapping Method in Binary Translation

More Information
  • Published Date: March 31, 2019
  • To reduce the redundant memory access caused by unnecessary registers overflow in binary translation, as the registers mapping in binary translation ignores the difference of register requirements among basic blocks and loop blocks, an efficient dynamic and static combined registers mapping optimization algorithm based on priority is proposed, introduces the idea of allocating global register statically and allocating local register dynamically. Firstly, global register is mapped statically to reduce the global register overflow cost and maintenance overhead, according to statistical features of different registers used on the source platform and the life cycle of variable. Then, the number of registers requested by intermediate instruction can be obtained, based on the intermediate representation. Therefore, the priority of registers allocation is determined. Lastly, dynamically allocate the registers in order to reduce the number of registers overflow, to reduce the expansion rate of the generated local code and memory access times. Thus, the performance of the target program is improved. The test results of NBENCH, representative recursive programs and SPEC2006 show that, the algorithm effectively reduces the memory access of local code, and improves the program performance with an average increase of 8.56%, 8.14%, and 8.01%, respectively.
  • Related Articles

    [1]Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
    [2]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [3]Wang Meng, Wang Haofen, Li Bohan, Zhao Xiang, Wang Xin. Survey on Key Technologies of New Generation Knowledge Graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. DOI: 10.7544/issn1000-1239.20210829
    [4]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [5]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [6]Du Zhijuan, Du Zhirong, Wang Lu. Open Knowledge Graph Representation Learning Based on Neighbors and Semantic Affinity[J]. Journal of Computer Research and Development, 2019, 56(12): 2549-2561. DOI: 10.7544/issn1000-1239.2019.20190648
    [7]Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
    [8]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
    [9]Liu Zhiyuan, Sun Maosong, Lin Yankai, Xie Ruobing. Knowledge Representation Learning: A Review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261. DOI: 10.7544/issn1000-1239.2016.20160020
    [10]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
  • Cited by

    Periodical cited type(5)

    1. 张黎,骆春山,谢委员,李蓓蓓. 基于分支混淆算法的隐私数据库自适应加密方法. 计算机与现代化. 2022(03): 43-47 .
    2. 陈金娥,陈涛,童绪军. 基于混合加密算法的安全通讯系统的设计与实现. 兰州文理学院学报(自然科学版). 2022(05): 67-71+93 .
    3. 肖玉强,郭云飞,王亚文. 基于符号执行和N-scope复杂度的代码混淆度量方法. 网络与信息安全学报. 2022(06): 123-134 .
    4. 王晓龙,董玉雪. 软件多分支开发代码漏合问题及解决途径. 计算机系统应用. 2021(10): 312-318 .
    5. 鲍海燕,芦彩林,李俊丽. 基于公钥密码的通信网络安全加密系统设计. 重庆理工大学学报(自然科学). 2020(10): 146-152 .

    Other cited types(3)

Catalog

    Article views (1074) PDF downloads (408) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return