• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Jun, Pang Jianmin, Fu Liguo, Yue Feng, Shan Zheng, Zhang Jiahao. A Dynamic and Static Combined Register Mapping Method in Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(4): 708-718. DOI: 10.7544/issn1000-1239.2019.20170905
Citation: Wang Jun, Pang Jianmin, Fu Liguo, Yue Feng, Shan Zheng, Zhang Jiahao. A Dynamic and Static Combined Register Mapping Method in Binary Translation[J]. Journal of Computer Research and Development, 2019, 56(4): 708-718. DOI: 10.7544/issn1000-1239.2019.20170905

A Dynamic and Static Combined Register Mapping Method in Binary Translation

More Information
  • Published Date: March 31, 2019
  • To reduce the redundant memory access caused by unnecessary registers overflow in binary translation, as the registers mapping in binary translation ignores the difference of register requirements among basic blocks and loop blocks, an efficient dynamic and static combined registers mapping optimization algorithm based on priority is proposed, introduces the idea of allocating global register statically and allocating local register dynamically. Firstly, global register is mapped statically to reduce the global register overflow cost and maintenance overhead, according to statistical features of different registers used on the source platform and the life cycle of variable. Then, the number of registers requested by intermediate instruction can be obtained, based on the intermediate representation. Therefore, the priority of registers allocation is determined. Lastly, dynamically allocate the registers in order to reduce the number of registers overflow, to reduce the expansion rate of the generated local code and memory access times. Thus, the performance of the target program is improved. The test results of NBENCH, representative recursive programs and SPEC2006 show that, the algorithm effectively reduces the memory access of local code, and improves the program performance with an average increase of 8.56%, 8.14%, and 8.01%, respectively.
  • Related Articles

    [1]Liang Bin, Li Guanghui, Dai Chenglong. G-mean Weighted Classification Method for Imbalanced Data Stream with Concept Drift[J]. Journal of Computer Research and Development, 2022, 59(12): 2844-2857. DOI: 10.7544/issn1000-1239.20210471
    [2]Liang Xinyan, Qian Yuhua, Guo Qian, Huang Qin. Multi-Granulation Fusion-Driven Method for Many-View Classification[J]. Journal of Computer Research and Development, 2022, 59(8): 1653-1667. DOI: 10.7544/issn1000-1239.20211112
    [3]Zhang Litian, Kong Jiayi, Fan Yihang, Fan Lingjun, Bao Ergude. Car Accident Prediction Based on Macro and Micro Factors in Probability Level[J]. Journal of Computer Research and Development, 2021, 58(9): 2052-2061. DOI: 10.7544/issn1000-1239.2021.20200345
    [4]Ju Zhuoya, Wang Zhihai. A Bayesian Classification Algorithm Based on Selective Patterns[J]. Journal of Computer Research and Development, 2020, 57(8): 1605-1616. DOI: 10.7544/issn1000-1239.2020.20200196
    [5]Wang Zhenwen, Xiao Weidong, and Tan Wentang. Classification in Networked Data Based on the Probability Generative Model[J]. Journal of Computer Research and Development, 2013, 50(12): 2642-2650.
    [6]Zhang Zhancheng, Wang Shitong, Fu-Lai Chung. Collaborative Classification Mechanism for Privacy-Preserving[J]. Journal of Computer Research and Development, 2011, 48(6): 1018-1028.
    [7]Huo Weigang, Shao Xiuli. A Fuzzy Associative Classification Method Based on Multi-Objective Evolutionary Algorithm[J]. Journal of Computer Research and Development, 2011, 48(4): 567-575.
    [8]Zou Quan, Guo Maozu, Liu Yang, and Wang Jun. A Classification Method for Class-Imbalanced Data and Its Application on Bioinformatics[J]. Journal of Computer Research and Development, 2010, 47(8): 1407-1414.
    [9]Ge Weiping, Wang Wei, Zhou Haofeng, and Shi Baile. Privacy Preserving Classification Mining[J]. Journal of Computer Research and Development, 2006, 43(1): 39-45.
    [10]Wu Gaowei, Tao Qing, Wang Jue. Support Vector Machines Based on Posteriori Probability[J]. Journal of Computer Research and Development, 2005, 42(2): 196-202.
  • Cited by

    Periodical cited type(9)

    1. 陈城,裴慧坤,刘丙财,林国安,魏恩伟,温启良. 基于公共边缘节点的输电物联网网关异构协议适配方法研究. 电测与仪表. 2024(11): 142-147 .
    2. 许明宇,王宜怀. 异构物联网中关联数据一致性规则挖掘模型. 计算机仿真. 2023(02): 425-428+442 .
    3. 常伟鹏,袁泉. 融合多模式匹配的网络信息实体关联研究仿真. 计算机仿真. 2021(01): 331-335 .
    4. 马早霞,李磊,刘心. 基于LoRaWAN协议的双向认证接入机制的研究. 河北工程大学学报(自然科学版). 2021(01): 92-98 .
    5. 汪滢,熊璐,刘晓. 基于大数据处理的模式匹配算法效率分析. 现代电子技术. 2021(09): 124-128 .
    6. 屈春一. 非均质性海量复杂异构数据的混合云存储技术. 单片机与嵌入式系统应用. 2021(08): 26-30 .
    7. 吴进伟,苏恺,董文斌. 基于混沌反馈控制的物联网配网物资数据选择算法研究. 电子设计工程. 2020(12): 105-108+113 .
    8. 韩高峰. 智能网络系统低匹配度数据深度挖掘算法研究. 宁夏师范学院学报. 2020(04): 82-88 .
    9. 张瑾. 电能计量在生活中的重要性研究. 电子元器件与信息技术. 2019(05): 99-102 .

    Other cited types(1)

Catalog

    Article views (1073) PDF downloads (408) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return