• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Jingkun, Du Yunfei. An Overlap Store Optimization for Large-Scale Parallel Earth Science Application[J]. Journal of Computer Research and Development, 2019, 56(4): 790-797. DOI: 10.7544/issn1000-1239.2019.20170906
Citation: Chen Jingkun, Du Yunfei. An Overlap Store Optimization for Large-Scale Parallel Earth Science Application[J]. Journal of Computer Research and Development, 2019, 56(4): 790-797. DOI: 10.7544/issn1000-1239.2019.20170906

An Overlap Store Optimization for Large-Scale Parallel Earth Science Application

More Information
  • Published Date: March 31, 2019
  • Weather forecast, atmosphere or ocean simulations have much output data during the iterative computation for the intermediate status or check point. However, an unreasonable output design limits the performance of the earth science application in large-scale parallel computation. In this paper, we propose an overlap store optimization to solve this problem. The key issue of this overlap store optimization is setting some I/O processes to hide the I/O cost. This optimization has three main advantages: first, we hide the I/O operation through the overlap of output and computing; second, we limit the cost of gather operation, break though the bottleneck of gather communication bandwidth and memory size; third, the I/O process is flexible to use different high-performance parallel I/O API. We use this method to optimize WRF, ROMS_AGRIF and GRAPES in Tianhe II super computer, and test their performance after the optimization. The result of the tests shows that we obtain about 30% to 900% improvement in the peak. We also discuss the best proportion of computer process and I/O process when the total number of processes is fixed. The optimized version is very easy to used, and the only cost is the scientists need to setup two more variables in the namelist.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (755) PDF downloads (258) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return