• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Zheng, An Hong, Jin Xu, Chi Mengxian, Lü Guofeng, Wen Ke, Zhou Xin. Research and Optimization of Fast Convolution Algorithm Winograd on Intel Platform[J]. Journal of Computer Research and Development, 2019, 56(4): 825-835. DOI: 10.7544/issn1000-1239.2019.20170932
Citation: Wu Zheng, An Hong, Jin Xu, Chi Mengxian, Lü Guofeng, Wen Ke, Zhou Xin. Research and Optimization of Fast Convolution Algorithm Winograd on Intel Platform[J]. Journal of Computer Research and Development, 2019, 56(4): 825-835. DOI: 10.7544/issn1000-1239.2019.20170932

Research and Optimization of Fast Convolution Algorithm Winograd on Intel Platform

More Information
  • Published Date: March 31, 2019
  • With the rapid development of deep learning, it’s applied extensively for many fields, such as speech processing, image recognition, natural language understanding and so on, bringing great changes for scientific research and daily life. Intel which follows the trend of deep learning launched the second generation of Xeon Phi processor Intel KNL(knights landing), and released the third generation Intel KNM (knights mill), which brings new impetus and vitality for the prosperous development of deep learning. This paper mainly contributes to promoting perfect Intel MKL (math kernel library) DNN (deep neural network), and develops deep learning on Intel platform, according to research and optimization for the fast convolution algorithm Winograd. Combined with characteristics of Intel latest deep learning platform, such as AVX512, high-speed memory MCDRAM, various memory/SNC modes, two-dimensional grid-type cores structure and so on, this work aims to design and optimize the implementation of Winograd algorithm by analyzing memory allocation, data dependency, etc. Finally, on one hand, the typical CNN (convolutional neural network) model VGG19 is used to test and compare performance with Intel MKL convolution, achieving more than doubled acceleration of performance. On the other hand, the common different types of convolutions are used to test and compare performance with Intel MKL DNN and NVIDIA cuDNN, verifying applicability and objective use value about Winograd. The purpose of the paper is to provide important guiding significance for development of Intel platform in the field of deep learning.
  • Related Articles

    [1]Zhang Liping, Liu Lei, Hao Xiaohong, Li Song, Hao Zhongxiao. Voronoi-Based Group Reverse k Nearest Neighbor Query in Obstructed Space[J]. Journal of Computer Research and Development, 2017, 54(4): 861-871. DOI: 10.7544/issn1000-1239.2017.20151111
    [2]Yang Zexue, Hao Zhongxiao. Group Obstacle Nearest Neighbor Query in Spatial Database[J]. Journal of Computer Research and Development, 2013, 50(11): 2455-2462.
    [3]Liu Runtao, Hao Zhongxiao. Fast Algorithm of Nearest Neighbor Query for Line Segments of Spatial Database[J]. Journal of Computer Research and Development, 2011, 48(12): 2379-2384.
    [4]Miao Dongjing, Shi Shengfei, and Li Jianzhong. An Algorithm on Probabilistic Frequent Nearest Neighbor Query over Snapshots of Uncertain Database with Locally Correlation[J]. Journal of Computer Research and Development, 2011, 48(10): 1812-1822.
    [5]Liao Haojun, Han Jizhong, Fang Jinyun. All-Nearest-Neighbor Queries Processing in Spatial Databases[J]. Journal of Computer Research and Development, 2011, 48(1): 86-93.
    [6]Sun Dongpu, Hao Zhongxiao. Group Nearest Neighbor Queries Based on Voronoi Diagrams[J]. Journal of Computer Research and Development, 2010, 47(7): 1244-1251.
    [7]Sun Dongpu, Hao Zhongxiao. Multi-Type Nearest Neighbor Queries with Partial Range Constrained[J]. Journal of Computer Research and Development, 2009, 46(6): 1036-1042.
    [8]Hao Zhongxiao, Wang Yudong, He Yunbin. Line Segment Nearest Neighbor Query of Spatial Database[J]. Journal of Computer Research and Development, 2008, 45(9): 1539-1545.
    [9]Zhang Jing, Lu Hong, and Xue Xiangyang. Efficient Sports Video Retrieval Based on Index Structure[J]. Journal of Computer Research and Development, 2006, 43(11): 1953-1958.
    [10]Dong Daoguo, Liu Zhenzhong, and Xue Xiangyang. VA-Trie: A New and Efficient High Dimensional Index Structure for Approximate k Nearest Neighbor Query[J]. Journal of Computer Research and Development, 2005, 42(12): 2213-2218.
  • Cited by

    Periodical cited type(6)

    1. 徐怡,陶强. 划分序乘积空间约简算法研究. 系统工程理论与实践. 2025(02): 554-570 .
    2. 徐怡,邱紫恒. 基于遗传算法的划分序乘积空间问题求解层选择. 软件学报. 2024(04): 1945-1963 .
    3. 徐怡,张杰. 基于划分序乘积空间的多尺度决策模型. 智能系统学报. 2024(06): 1528-1538 .
    4. 王宝丽,王涛,廉侃超,韩素青. 粒空间中划分知识的正交补研究. 山东大学学报(理学版). 2022(03): 31-40 .
    5. 陈丽芳,代琪,付其峰. 基于粒计算的ELM加权集成算法研究. 华北理工大学学报(自然科学版). 2020(03): 126-132 .
    6. 应申,王子豪,杜志强,丁火平,李翔翔. 数据粒度均衡的二维矢量瓦片构建方法. 地理信息世界. 2020(04): 66-74 .

    Other cited types(12)

Catalog

    Article views (1646) PDF downloads (660) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return