• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
Citation: Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709

Deep Learning for Digital Geometry Processing and Analysis: A Review

More Information
  • Published Date: December 31, 2018
  • With the rapid development of various hardware sensors and reconstruction technologies, digital geometric models have become the fourth generation of digital multimedia after audio, image and video, and have been widely used in many fields. Traditional digital geometry processing and analysis are mainly based on manually defined features that can only be valid for specific problems or under specific conditions. The deep learning, especially the neural network model, in the success of natural language processing and image processing demonstrates its powerful ability as a feature extraction tool for data analysis, and is therefore gradually used in the field of digital geometry processing. In this paper, we review the works of digital geometry processing and analysis based on deep learning in recent years, carefully analyze the research progress of shape matching and retrieval, shape classification and segmentation, shape generation, shape completion and reconstruction and shape deformation and editing, and also point out some existing problems and a few possible directions of future works.
  • Related Articles

    [1]Tian Xuan, Xu Zezhou, Wang Zihan. Review of Deep Learning Based Query Suggestion[J]. Journal of Computer Research and Development, 2024, 61(12): 3168-3187. DOI: 10.7544/issn1000-1239.202220837
    [2]Yang Jieyi, Dong Yihong, Qian Jiangbo. Research Progress of Few-Shot Learning Methods Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2024, 61(4): 856-876. DOI: 10.7544/issn1000-1239.202220933
    [3]Liu Tieyuan, Chen Wei, Chang Liang, Gu Tianlong. Research Advances in the Knowledge Tracing Based on Deep Learning[J]. Journal of Computer Research and Development, 2022, 59(1): 81-104. DOI: 10.7544/issn1000-1239.20200848
    [4]Zhang Yingjun, Chen Kai, Zhou Geng, Lü Peizhuo, Liu Yong, Huang Liang. Research Progress of Neural Networks Watermarking Technology[J]. Journal of Computer Research and Development, 2021, 58(5): 964-976. DOI: 10.7544/issn1000-1239.2021.20200978
    [5]Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
    [6]Cheng Keyang, Wang Ning, Shi Wenxi, Zhan Yongzhao. Research Advances in the Interpretability of Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. DOI: 10.7544/issn1000-1239.2020.20190485
    [7]Zhang Rui, Li Jintao. A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(4): 859-875. DOI: 10.7544/issn1000-1239.2020.20190513
    [8]Ji Rongrong, Lin Shaohui, Chao Fei, Wu Yongjian, Huang Feiyue. Deep Neural Network Compression and Acceleration: A Review[J]. Journal of Computer Research and Development, 2018, 55(9): 1871-1888. DOI: 10.7544/issn1000-1239.2018.20180129
    [9]Wang Jingyuan, Li Chao, Xiong Zhang, Shan Zhiguang. Survey of Data-Centric Smart City[J]. Journal of Computer Research and Development, 2014, 51(2): 239-259.
    [10]Su Xiaohong, Zhang Mingjie, Ma Peijun, and Wang Yadong. Research on Solving the Problem of CMAC Neural Network Collision[J]. Journal of Computer Research and Development, 2006, 43(5): 862-866.
  • Cited by

    Periodical cited type(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 .
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 .
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 .
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 .
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 .
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 .
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 .
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 .
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 .
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 .
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 .
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 .
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 .
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 .

    Other cited types(20)

Catalog

    Article views (2184) PDF downloads (1072) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return