• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Yunqing, Wang Songjian, and Wu Zhongfu. A Routing Protocol of Wireless Mesh Network Based on Weighted Link State[J]. Journal of Computer Research and Development, 2009, 46(1): 137-143.
Citation: Fu Yunqing, Wang Songjian, and Wu Zhongfu. A Routing Protocol of Wireless Mesh Network Based on Weighted Link State[J]. Journal of Computer Research and Development, 2009, 46(1): 137-143.

A Routing Protocol of Wireless Mesh Network Based on Weighted Link State

More Information
  • Published Date: January 14, 2009
  • Wireless mesh networks are emerging as a key technology for next generation wireless networking. Due to the fact that their standardization is still on the way, the currently routing protocols of wireless mesh networks basically continue to use the algorithms in ad hoc networks. However, experiments and applications show that the routing protocols in ad hoc networks are not appropriate for wireless mesh networks. On the basis of analyzing the flaws of AODV routing protocol, a novel routing protocol for wireless mesh networks, MODVWLS, is proposed to solve this problem. Weighted link state, which is composed of nodes available bandwidth, throughput and buffer saturation, is used as routing metric in MODVWLS. Each node periodically calculates the cost (weight) of transmission to its next hop, and the path with minimal accumulative weight from source to destination is finally used as preferred route. In order to utilize disengaged nodes sufficiently and balance network load dynamically, overload alarm mechanism is adopted to initiate new route discovering. Weight calculation, message formats, route discovering, and maintaining process are also introduced in detail. Finally, several simulations are conducted by ns-2, and the results show that MODVWLS is better than AODV on packet delivery fraction, end-to-end delay and normalized routing load, it is thus more appropriate for wireless mesh networks.
  • Related Articles

    [1]Wang Yuwei, Liu Min, Ma Cheng, Li Pengfei. High Performance Load Balancing Mechanism for Network Function Virtualization[J]. Journal of Computer Research and Development, 2018, 55(4): 689-703. DOI: 10.7544/issn1000-1239.2018.20170923
    [2]Wang Peng, Huang Yan, Li Kun, Guo Youming. Load Balancing Degree First Algorithm on Phase Space for Cloud Computing Cluster[J]. Journal of Computer Research and Development, 2014, 51(5): 1095-1107.
    [3]Shen Zhijun, Zeng Huashen. A Load Balanced Switch Architecture Based on Implicit Flow Splitter[J]. Journal of Computer Research and Development, 2012, 49(6): 1220-1227.
    [4]Zhang Lilun, Ye Hong, Wu Jianping, Song Junqiang. Parallel Load-Balancing Performance Analysis Based on Maximal Ratio of Load Offset[J]. Journal of Computer Research and Development, 2010, 47(6).
    [5]Liu Xinhua, Li Fangmin, Kuang Hailan, Fang Yilin. An Distributed and Directed Clustering Algorithm Based on Load Balance for Wireless Sensor Network[J]. Journal of Computer Research and Development, 2009, 46(12): 2044-2052.
    [6]Ren Juan and Qiu Zhengding. Load-Balancing Routing Based on Path Metric for Multi-Channel Wireless Mesh Networks[J]. Journal of Computer Research and Development, 2008, 45(12): 2079-2086.
    [7]Wang Xianghui, Zhang Guoyin, and Xie Xiaoqin. A Load Balance Clustering Algorithm for Multilevel Energy Heterogeneous Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2008, 45(3): 392-399.
    [8]Li Zhenyu, Xie Gaogang. A Load Balancing Algorithm for DHT-Based P2P Systems[J]. Journal of Computer Research and Development, 2006, 43(9): 1579-1585.
    [9]Tian Junfeng, Liu Yuling, and Du Ruizhong. Research of a Load Balancing Model Based on Mobile Agent[J]. Journal of Computer Research and Development, 2006, 43(9): 1571-1578.
    [10]Zhang Xiangquan, Guo Wei. A Bidirectional Path Re-Selection Based Load-Balanced Routing Protocol for Ad-Hoc Networks[J]. Journal of Computer Research and Development, 2006, 43(2): 218-223.

Catalog

    Article views (826) PDF downloads (600) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return