• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hong Yu, Zhu Shanshan, Ding Siyuan, Yao Jianmin, Zhu Qiaoming, Zhou Guodong. Implicit Discourse Relation Inference Based on the External Relation[J]. Journal of Computer Research and Development, 2015, 52(11): 2476-2487. DOI: 10.7544/issn1000-1239.2015.20140803
Citation: Hong Yu, Zhu Shanshan, Ding Siyuan, Yao Jianmin, Zhu Qiaoming, Zhou Guodong. Implicit Discourse Relation Inference Based on the External Relation[J]. Journal of Computer Research and Development, 2015, 52(11): 2476-2487. DOI: 10.7544/issn1000-1239.2015.20140803

Implicit Discourse Relation Inference Based on the External Relation

More Information
  • Published Date: October 31, 2015
  • The main task of the discourse relation recognition is to automatically identify the relationships between two text spans. Currently, the performance of the explicit discourse relation can reach 93.09% because of its direct clues, however the performance of the implicit discourse recognition is still far from satisfactory since it has no direct clues. For the resolution of this issue, this paper proposes a novel implicit discourse relation inference approach based on the external relation. The method follows the existing inference pattern that uses the explicit relation to infer the implicit relation. Firstly, it searches the explicit reference arguments that have the similar content with the test arguments in the large scale of external data, then it uses the standard sorting algorithm to rank the explicit reference arguments. Finally, it predicts the implicit discourse relation based on the ranking results. Especially, the method focuses on mining the text fragments which can synergistically trigger the discourse relation between two arguments (called external elements), and predicts the implicit discourse relation of the arguments with reference to the relation between two external elements. Experiments on the Penn discourse treebank (PDTB) show an accuracy of 54.12%, which is a significant improvement of 11.82% over the current state-of-the-art system.
  • Related Articles

    [1]Li Kunze, Zhang Yu. Adaptive Pipeline Unsupervised Question Generation Method[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330857
    [2]Zhou Xiaohui, Wang Yijie, Xu Hongzuo, Liu Mingyu. Fusion Learning Based Unsupervised Anomaly Detection for Multi-Dimensional Time Series[J]. Journal of Computer Research and Development, 2023, 60(3): 496-508. DOI: 10.7544/issn1000-1239.202220490
    [3]Chen Liwen, Ye Feng, Huang Tianqiang, Huang Liqing, Weng Bin, Xu Chao, Hu Jie. An Unsupervised Person Re-Identification Method Based on Intra-/Inter-Camera Merger[J]. Journal of Computer Research and Development, 2023, 60(2): 415-425. DOI: 10.7544/issn1000-1239.202110732
    [4]Cai Derun, Li Hongyan. A Metric Learning Based Unsupervised Domain Adaptation Method with Its Application on Mortality Prediction[J]. Journal of Computer Research and Development, 2022, 59(3): 674-682. DOI: 10.7544/issn1000-1239.20200693
    [5]Huang Xunhua, Zhang Fengbin, Fan Haoyi, Xi Liang. Multimodal Adversarial Learning Based Unsupervised Time Series Anomaly Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667. DOI: 10.7544/issn1000-1239.2021.20201037
    [6]Liu Yanfang, Li Wenbin, Gao Yang. Adaptive Neighborhood Embedding Based Unsupervised Feature Selection[J]. Journal of Computer Research and Development, 2020, 57(8): 1639-1649. DOI: 10.7544/issn1000-1239.2020.20200219
    [7]Lu Haifeng, Gu Chunhua, Luo Fei, Ding Weichao, Yang Ting, Zheng Shuai. Research on Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(7): 1539-1554. DOI: 10.7544/issn1000-1239.2020.20190291
    [8]Xia Qing, Li Shuai, Hao Aimin, Zhao Qinping. Deep Learning for Digital Geometry Processing and Analysis: A Review[J]. Journal of Computer Research and Development, 2019, 56(1): 155-182. DOI: 10.7544/issn1000-1239.2019.20180709
    [9]Liang Peng, Li Shaofa, Wang Cheng. A New Unsupervised Foreground Object Detection Method[J]. Journal of Computer Research and Development, 2012, 49(8): 1721-1729.
    [10]Li Ming and Zhou Zhihua. Online Semi-Supervised Learning with Multi-Kernel Ensemble[J]. Journal of Computer Research and Development, 2008, 45(12): 2060-2068.
  • Cited by

    Periodical cited type(19)

    1. 郑晨颖,陈颖悦,侯贤宇,江连吉,廖亮. 一种邻域粒的模糊C均值聚类算法. 山东大学学报(理学版). 2024(05): 35-44 .
    2. 刘帆,王凤美. 多模态内容安全审核系统构建思考. 中国传媒科技. 2023(04): 149-153 .
    3. 季长清,王兵兵,秦静,汪祖民. 深度特征的实例图像检索算法综述. 计算机科学与探索. 2023(07): 1565-1575 .
    4. 周成龙,陈玉明,朱益冬. 粒K均值聚类算法. 计算机工程与应用. 2023(13): 317-324 .
    5. 张家钧,唐云祁,杨智雄,耿鹏志. 基于注意力机制的鞋型识别算法. 激光与光电子学进展. 2022(02): 365-373 .
    6. 于伟,邱彩华. 一种基于深度学习的异质域检索方法. 安徽大学学报(自然科学版). 2022(04): 30-37 .
    7. 杨得国,马兰萍,聂毓. 基于PCANet和SVM的病变眼底图像检测算法. 江西师范大学学报(自然科学版). 2022(04): 372-378 .
    8. 关海鹏,任燕,赵秋霞. 集成局部和全局特征的舰船图像检索算法. 舰船科学技术. 2021(02): 100-102 .
    9. 魏明珠,郑荣,杨竞雄. 基于深度学习的图像检索研究进展. 情报科学. 2021(05): 184-192 .
    10. 毛亚青,王亮,胡俊峰. 基于加权深度特征的医学图像并行检索仿真. 计算机仿真. 2021(11): 438-444 .
    11. 余鹰,朱慧琳,钱进,潘诚,苗夺谦. 基于深度学习的人群计数研究综述. 计算机研究与发展. 2021(12): 2724-2747 . 本站查看
    12. 谭翔纬. 基于支持向量机和用户反馈的图像检索算法. 吉林大学学报(理学版). 2020(04): 899-905 .
    13. 张超,林正春,姜允志,贾西平,王静. 用于图像检索的多区域深度特征加权聚合算法. 软件导刊. 2020(10): 133-137 .
    14. 梁观术,曹江中,戴青云,黄云飞. 一种基于注意力机制的无监督商标检索方法. 广东工业大学学报. 2020(06): 41-49 .
    15. 李英成,钱赛男,朱祥娥,刘晓龙,李晶晶. 卷积神经网络在大规模图像分类中的应用. 测绘科学. 2019(06): 121-125 .
    16. 邵福波,黄静. 图像检索研究综述. 山东化工. 2019(15): 81-82 .
    17. 石文浩,孟军,张朋,刘婵娟. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型. 计算机研究与发展. 2019(08): 1652-1660 . 本站查看
    18. 欧焱,冯煜晶,李文明,叶笑春,王达,范东睿. 面向数据流结构的指令内访存冲突优化研究. 计算机研究与发展. 2019(12): 2720-2732 . 本站查看
    19. 陈思聪. 基于兴趣点局部分布特征的图像检索研究. 微型电脑应用. 2019(12): 114-116+154 .

    Other cited types(33)

Catalog

    Article views (1140) PDF downloads (604) Cited by(52)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return