• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Long Jun, Yin Jianping, Zhu En, and Cai Zhiping. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478.
Citation: Long Jun, Yin Jianping, Zhu En, and Cai Zhiping. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478.

An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances

More Information
  • Published Date: March 14, 2008
  • Active learning methods can alleviate the efforts of labeling large amounts of instances by selecting and asking experts to label only the most informative examples. Sampling is a key factor influencing the performance of active learning. Currently, the leading methods of sampling generally choose the instance or instances that can reduce the version space by half. However, the strategy of halving the version space assumes each hypothesis in version space has equal probability to be the target function which can not be satisfied in real world problems. In this paper, the limitation of the strategy of halving the version space is analyzed. Then presented is a sampling method named MPWPS (the most possibly wrong-predicted sampling) aiming to reduce the version space more than half. While sampling, MPWPS chooses the instance or instances that would be most likely to be predicted wrong by the current classifier, so that more than half of hypotheses in the version space are eliminated. Comparing the proposed MPWPS method and the existing active learning methods, when the classifiers achieve the same accuracy, the former method will sample fewer times than the latter ones. The experiments show that the MPWPS method samples fewer instances than traditional sampling methods on most datasets when obtaining the same target accuracy.
  • Related Articles

    [1]Zhang Shuyi, Xi Zhengjun. Quantum Hypothesis Testing Mutual Information[J]. Journal of Computer Research and Development, 2021, 58(9): 1906-1914. DOI: 10.7544/issn1000-1239.2021.20210346
    [2]Chu Xiaokai, Fan Xinxin, Bi Jingping. Position-Aware Network Representation Learning via K-Step Mutual Information Estimation[J]. Journal of Computer Research and Development, 2021, 58(8): 1612-1623. DOI: 10.7544/issn1000-1239.2021.20210321
    [3]Xu Mengfan, Li Xinghua, Liu Hai, Zhong Cheng, Ma Jianfeng. An Intrusion Detection Scheme Based on Semi-Supervised Learning and Information Gain Ratio[J]. Journal of Computer Research and Development, 2017, 54(10): 2255-2267. DOI: 10.7544/issn1000-1239.2017.20170456
    [4]Zha Zhengjun, Zheng Xiaoju. Query and Feedback Technologies in Multimedia Information Retrieval[J]. Journal of Computer Research and Development, 2017, 54(6): 1267-1280. DOI: 10.7544/issn1000-1239.2017.20170004
    [5]Li Feng, Miao Duoqian, Zhang Zhifei, Zhang Wei. Mutual Information Based Granular Feature Weighted k-Nearest Neighbors Algorithm for Multi-Label Learning[J]. Journal of Computer Research and Development, 2017, 54(5): 1024-1035. DOI: 10.7544/issn1000-1239.2017.20160351
    [6]Xue Yuanhai, Yu Xiaoming, Liu Yue, Guan Feng, Cheng Xueqi. Exploration of Weighted Proximity Measure in Information Retrieval[J]. Journal of Computer Research and Development, 2014, 51(10): 2216-2224. DOI: 10.7544/issn1000-1239.2014.20130339
    [7]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [8]Xu Junling, Zhou Yuming, Chen Lin, Xu Baowen. An Unsupervised Feature Selection Approach Based on Mutual Information[J]. Journal of Computer Research and Development, 2012, 49(2): 372-382.
    [9]Liu He, Zhang Xianghong, Liu Dayou, Li Yanjun, Yin Lijun. A Feature Selection Method Based on Maximal Marginal Relevance[J]. Journal of Computer Research and Development, 2012, 49(2): 354-360.
    [10]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.

Catalog

    Article views (815) PDF downloads (718) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return