• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Long Jun, Yin Jianping, Zhu En, and Cai Zhiping. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478.
Citation: Long Jun, Yin Jianping, Zhu En, and Cai Zhiping. An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances[J]. Journal of Computer Research and Development, 2008, 45(3): 472-478.

An Active Learning Algorithm by Selecting the Most Possibly Wrong-Predicted Instances

More Information
  • Published Date: March 14, 2008
  • Active learning methods can alleviate the efforts of labeling large amounts of instances by selecting and asking experts to label only the most informative examples. Sampling is a key factor influencing the performance of active learning. Currently, the leading methods of sampling generally choose the instance or instances that can reduce the version space by half. However, the strategy of halving the version space assumes each hypothesis in version space has equal probability to be the target function which can not be satisfied in real world problems. In this paper, the limitation of the strategy of halving the version space is analyzed. Then presented is a sampling method named MPWPS (the most possibly wrong-predicted sampling) aiming to reduce the version space more than half. While sampling, MPWPS chooses the instance or instances that would be most likely to be predicted wrong by the current classifier, so that more than half of hypotheses in the version space are eliminated. Comparing the proposed MPWPS method and the existing active learning methods, when the classifiers achieve the same accuracy, the former method will sample fewer times than the latter ones. The experiments show that the MPWPS method samples fewer instances than traditional sampling methods on most datasets when obtaining the same target accuracy.
  • Related Articles

    [1]Hong Min, Jia Caiyan, Li Yafang, Yu Jian. Sample-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2019, 56(8): 1677-1685. DOI: 10.7544/issn1000-1239.2019.20190150
    [2]Xu Hang, Zhang Kai, Wang Wenjian. A Feature Selection Method for Small Samples[J]. Journal of Computer Research and Development, 2018, 55(10): 2321-2330. DOI: 10.7544/issn1000-1239.2018.20170748
    [3]Xiong Bingyan, Wang Guoyin, Deng Weibin. Under-Sampling Method Based on Sample Weight for Imbalanced Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2613-2622. DOI: 10.7544/issn1000-1239.2016.20150593
    [4]Ma Gang, Du Yuge, An Bo, Zhang Bo, Wang Wei, Shi Zhongzhi. Risk Evaluation of Complex Information System Based on Threat Propagation Sampling[J]. Journal of Computer Research and Development, 2015, 52(7): 1642-1659. DOI: 10.7544/issn1000-1239.2015.20140184
    [5]Zhang Yu, Liu Ping, Liu Yanbing, Tan Jianlong, Guo Li. Algorithmic Complexity Attacks Against WuManber[J]. Journal of Computer Research and Development, 2011, 48(8): 1381-1389.
    [6]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [7]Ha Minghu, Tian Jingfeng, Zhang Zhiming. Structural Risk Minimization Principle Based on Complex Random Samples[J]. Journal of Computer Research and Development, 2009, 46(11): 1907-1916.
    [8]Huang Han, Hao Zhifeng, Qin Yong. Time Complexity of Evolutionary Programming[J]. Journal of Computer Research and Development, 2008, 45(11): 1850-1857.
    [9]Tian Mei, Luo Siwei, Huang Yaping, and Zhao Jiali. Extracting Bottom-Up Attention Information Based on Local Complexity and Early Visual Features[J]. Journal of Computer Research and Development, 2008, 45(10): 1739-1746.
    [10]Pan Rui, Zhu Daming, and Ma Shaohan. Research on Computational Complexity and Approximation Algorithm for General Facility Location Problem[J]. Journal of Computer Research and Development, 2007, 44(5): 790-797.

Catalog

    Article views (815) PDF downloads (718) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return