• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Le, Feng Lin, Wang Shui. An Algorithm of Mining TOP-K High Utility Patterns Without Generating Candidates[J]. Journal of Computer Research and Development, 2015, 52(2): 445-455. DOI: 10.7544/issn1000-1239.2015.20131184
Citation: Wang Le, Feng Lin, Wang Shui. An Algorithm of Mining TOP-K High Utility Patterns Without Generating Candidates[J]. Journal of Computer Research and Development, 2015, 52(2): 445-455. DOI: 10.7544/issn1000-1239.2015.20131184

An Algorithm of Mining TOP-K High Utility Patterns Without Generating Candidates

More Information
  • Published Date: January 31, 2015
  • Mining TOP-K high utility pattern from a dataset is an extension of frequent pattern mining, and it aims to mine the patterns whose utilities are higher than a user-specified minimum utility threshold. At present, it has been a topic in data mining. Existing algorithms of mining TOP-K high utility pattern generate candidate itemsets in the mining process and they need multiple scans of a dataset; this hinders their performance of runtime and memory usage, especially when a dataset is large or there are many long transaction itemsets in a dataset. To address this issue, we propose a tree structure called HUP-Tree (high utility pattern tree) to maintain transaction itemsets and their utility values, and we also give an algorithm named TOPKHUP (TOP-K high utility pattern) that mines TOP-K high utility patterns without generating candidates. HUP-Tree ensures efficient retrieval of utility value of each pattern without additional scan of the dataset, so the performance of the algorithm is effectively improved. Seven classical real and synthetic datasets are used in the testing experiments and the results show that the proposed algorithm outperforms state-of-the-art algorithms significantly for both runtime performance and memory usage, and it is more stable along the change of the value K.
  • Related Articles

    [1]Wang Duo, Liu Jinglei, Yan Mingyu, Teng Yihan, Han Dengke, Ye Xiaochun, Fan Dongrui. Acceleration Methods for Processor Microarchitecture Design Space Exploration: A Survey[J]. Journal of Computer Research and Development, 2025, 62(1): 22-57. DOI: 10.7544/issn1000-1239.202330348
    [2]Wang Kaifan, Xu Yinan, Yu Zihao, Tang Dan, Chen Guokai, Chen Xi, Gou Lingrui, Hu Xuan, Jin Yue, Li Qianruo, Li Xin, Lin Jiawei, Liu Tong, Liu Zhigang, Wang Huaqiang, Wang Huizhe, Zhang Chuanqi, Zhang Fawang, Zhang Linjuan, Zhang Zifei, Zhang Ziyue, Zhao Yangyang, Zhou Yaoyang, Zou Jiangrui, Cai Ye, Huan Dandan, Li Zusong, Zhao Jiye, He Wei, Sun Ninghui, Bao Yungang. XiangShan Open-Source High Performance RISC-V Processor Design and Implementation[J]. Journal of Computer Research and Development, 2023, 60(3): 476-493. DOI: 10.7544/issn1000-1239.202221036
    [3]Zhang Qianlong, Hou Rui, Yang Sibo, Zhao Boyan, Zhang Lixin. The Role of Architecture Simulators in the Process of CPU Design[J]. Journal of Computer Research and Development, 2019, 56(12): 2702-2719. DOI: 10.7544/issn1000-1239.2019.20190044
    [4]Yu Zihao, Liu Zhigang, Li Yiwei, Huang Bowen, Wang Sa, Sun Ninghui, Bao Yungang. Practice of Chip Agile Development: Labeled RISC-V[J]. Journal of Computer Research and Development, 2019, 56(1): 35-48. DOI: 10.7544/issn1000-1239.2019.20180771
    [5]Zhuo Xinxin, Bai Xiaoying, Xu Jing, Li Enpeng, Liu Yu, Kang Jiehui, Song Wenli. A Tool for Automatic Service Interface Testing[J]. Journal of Computer Research and Development, 2018, 55(2): 358-376. DOI: 10.7544/issn1000-1239.2018.20160721
    [6]Li Gongli, Dai Zibin, Xu Jinhui, Wang Shoucheng, Zhu Yufei, Feng Xiao. Design of Block Cipher Processor Based on Stream Architecture[J]. Journal of Computer Research and Development, 2017, 54(12): 2833-2842. DOI: 10.7544/issn1000-1239.2017.20160670
    [7]Chen Long, Ye Wei, Zhang Shikun. Onboard: A Data-Driven Agile Software Development Collaboration Tool[J]. Journal of Computer Research and Development, 2016, 53(12): 2753-2767. DOI: 10.7544/issn1000-1239.2016.20160625
    [8]Wang Yourui, Shi Wei, Wang Zhiying, Lu Hongyi, and Su Bo. A Novel Flow for Asynchronous Circuit Design Using Synchronous EDA Tools[J]. Journal of Computer Research and Development, 2012, 49(9): 2027-2035.
    [9]Li Tao, Zhang Xiaoming, and Sun Zhigang. Coarse-Grained Dataflow Network Processor:Architecture and Prototype Design[J]. Journal of Computer Research and Development, 2009, 46(8): 1278-1284.
    [10]Hu Yu, Han Yinhe, Li Xiaowei. Design-for-Testability and Test Technologies for System-on-a-Chip[J]. Journal of Computer Research and Development, 2005, 42(1): 153-162.
  • Cited by

    Periodical cited type(9)

    1. 王铎,刘景磊,严明玉,滕亦涵,韩登科,叶笑春,范东睿. 面向处理器微架构设计空间探索的加速方法综述. 计算机研究与发展. 2025(01): 22-57 . 本站查看
    2. 罗宇哲,李玲,侯朋朋,于佳耕,程丽敏,张常有,武延军,赵琛. 面向AIoT的协同智能综述. 计算机研究与发展. 2025(01): 179-206 . 本站查看
    3. 陈云霁,蔡一茂,汪玉,唐华,何杰,刘克,郝跃. 集成电路未来发展与关键问题——第347期“双清论坛(青年)”学术综述. 中国科学:信息科学. 2024(01): 1-15 .
    4. 翟建旺,凌梓超,白晨,赵康,余备. 机器学习辅助微架构功耗建模和设计空间探索综述. 计算机研究与发展. 2024(06): 1351-1369 . 本站查看
    5. 陈三伟,李进财,张婷,邱丹,江林. 面向芯片设计的Python系统级自动化工具开发. 电子技术应用. 2024(10): 14-17 .
    6. 乔寓然,王鹏,谢家志. 人工智能在运算放大器设计中的应用研究. 微电子学. 2024(04): 653-658 .
    7. 罗莉,石伟,何鸿君,潘国腾,王蕾,龚锐. 一种面向IO Die的敏捷验证方法. 计算机工程与科学. 2023(04): 571-576 .
    8. 王梦迪,王颖,刘成,常开颜,高成思,韩银和,李华伟,张磊. Puzzle:面向深度学习集成芯片的可扩展框架. 计算机研究与发展. 2023(06): 1216-1231 . 本站查看
    9. 贺旭,王耀,傅智勇,李暾,屈婉霞,万海,张吉良. 敏捷设计中基于机器学习的静态时序分析方法综述. 计算机辅助设计与图形学学报. 2023(04): 640-652 .

    Other cited types(8)

Catalog

    Article views (1384) PDF downloads (867) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return